Reducing the Read Noise of HAWAII-2RG Detector Systems with Improved Reference Sampling and Subtraction (IRS²)

Bernard J. Rauscher^a, Richard G. Arendt^b, D.J. Fixsen^c, Matthew Lander^f, Don Lindler^d, Markus Loose^e, S. H. Moseley^a, Donna V. Wilson^f, and Christos Xenophontos^f

Code 665, NASA Goddard Space Flight Center, Greenbelt, MD
CRESST/UMBC/GSFC, Greenbelt, MD
CRESST/UMd/GSFC, Greenbelt, MD
Sigma Space Corporation/GSFC, Greenbelt, MD
Markury Scientific, Inc., 518 Oakhampton Street, Thousand Oaks, CA
Gode 582, Goddard Space Flight Center, Greenbelt, MD

ABSTRACT

IRS² is a Wiener-optimal approach to using all of the reference information that Teledyne's HAWAII-2RG detector arrays provide. Using a new readout pattern, IRS² regularly interleaves reference pixels with the normal pixels during readout. This differs from conventional clocking, in which the reference pixels are read out infrequently, and only in a few rows and columns around the outside edges of the detector array. During calibration, the data are processed in Fourier space, which is close to the noise's eigenspace. Using IRS², we have reduced the read noise of the James Webb Space Telescope Near Infrared Spectrograph by 15% compared to conventional readout. We are attempting to achieve further gains by calibrating out recently recognized non-stationary noise that appears at the frame rate.

Keywords: HAWAII-2RG, H2RG, SIDECAR, noise, read noise