610 research outputs found

    Using density surface models to estimate spatio-temporal changes in population densities and trend

    Get PDF
    Funding – Centre for Research into Ecological and Environmental Modelling, University of St Andrews and U.S. Geological Survey provided funding for this analysis through a studentship to RJC.Precise measures of population abundance and trend are needed for species conservation; these are most difficult to obtain for rare and rapidly changing populations. We compare uncertainty in densities estimated from spatio–temporal models with that from standard design‐based methods. Spatio–temporal models allow us to target priority areas where, and at times when, a population may most benefit. Generalised additive models were fitted to a 31‐year time series of point‐transect surveys of an endangered Hawaiian forest bird, the Hawai'i ‘ākepa Loxops coccineus. This allowed us to estimate bird densities over space and time. We used two methods to quantify uncertainty in density estimates from the spatio–temporal model: the delta method (which assumes independence between detection and distribution parameters) and a variance propagation method. With the delta method we observed a 52% decrease in the width of the design‐based 95% confidence interval (CI), while we observed a 37% decrease in CI width when propagating the variance. We mapped bird densities as they changed across space and time, allowing managers to evaluate management actions. Integrating detection function modelling with spatio–temporal modelling exploits survey data more efficiently by producing finer‐grained abundance estimates than are possible with design‐based methods as well as producing more precise abundance estimates. Model‐based approaches require switching from making assumptions about the survey design to assumptions about bird distribution. Such a switch warrants carefully considered. In this case the model‐based approach benefits conservation planning through improved management efficiency and reduced costs by taking into account both spatial shifts and temporal changes in population abundance and distribution.Publisher PDFPeer reviewe

    Testing Prospects for Reliable Diatom Nanotechnology in Microgravity

    Get PDF
    The worldwide effort to grow nanotechnology, rather than use lithography, focuses on diatoms, single cell eukaryotic algae with ornate silica shells, which can be replaced by oxides and ceramics, or reduced to elemental silicon, to create complex nanostructures with compositions of industrial and electronics importance. Diatoms produce an enormous variety of structures, some of which are microtubule dependent and perhaps sensitive to microgravity. The NASA Single Loop for Cell Culture (SLCC) for culturing and observing microorganisms permits inexpensive, low labor in-space experiments. We propose to send up to the International Space Station diatom cultures of the three diatom species whose genomes are being sequenced, plus the giant diatoms of Antarctica (up to 2 mm diameter for a single cell) and the unique colonial diatom, Bacillaria paradoxa. Bacillaria cells move against each other in partial synchrony, like a sliding deck of cards, by a microfluidics mechanism. Will normal diatoms have aberrant pattern and shape or motility compared to ground controls? The generation time is typically one day, so that many generations may be examined from one flight. Rapid, directed evolution may be possible running the SLCC as a compustat. The shell shapes and patterns are preserved in hard silica, so that the progress of normal and aberrant morphogenesis may be followed by drying samples on a moving filter paper "diatom tape recorder". With a biodiversity of 100,000 distinct species, diatom nanotechnology may offer a compact and portable nanotechnology toolkit for exploration anywhere

    Current land bird distribution and trends in population abundance between 1982 and 2012 on Rota, Mariana Islands

    Get PDF
    The western Pacific island of Rota is the fourth largest human-inhabited island in the Mariana archipelago and designated an Endemic Bird Area. Between 1982 and 2012, 12 point-transect distance-sampling surveys were conducted to assess bird population status. Surveys did not consistently sample the entire island; thus, we used a ratio estimator to estimate bird abundances in strata not sampled during every survey. Trends in population size were reliably estimated for 11 of 13 bird species, and 7 species declined over the 30-y time series, including the island collared-dove Streptopelia bitorquata, white-throated ground-dove Gallicolumba xanthonura, Mariana fruit-dove Ptilinopus roseicapilla, collared kingfisher Todiramphus chloris orii, Micronesian myzomela Myzomela rubratra, black drongo Dicrurus macrocercus, and Mariana crow Corvus kubaryi. The endangered Mariana crow (x̄  =  81 birds, 95% CI 30–202) declined sharply to fewer than 200 individuals in 2012, down from 1,491 birds in 1982 (95% CI  =  815–3,115). Trends increased for white tern Gygis alba, rufous fantail Rhipidura rufifrons mariae, and Micronesian starling Aplonis opaca. Numbers of the endangered Rota white-eye Zosterops rotensis declined from 1982 to the late 1990s but returned to 1980s levels by 2012, resulting in an overall stable trend. Trends for the yellow bittern Ixobrychus sinensis were inconclusive. Eurasian tree sparrow Passer montanus trends were not assessed; however, their numbers in 1982 and 2012 were similar. Occupancy models of the 2012 survey data revealed general patterns of land cover use and detectability among 12 species that could be reliably modeled. Occupancy was not assessed for the Eurasian tree sparrow because of insufficient detections. Based on the 2012 survey, bird distribution and abundance across Rota revealed three general patterns: 1) range restriction, including Mariana crow, Rota white-eye, and Eurasian tree sparrow; 2) widespread distribution, low abundance, including collared kingfisher, island collared-dove, white-throated ground-dove, Mariana fruit-dove, white tern, yellow bittern, black drongo, and Micronesian myzomela; and 3) widespread distribution, high abundance, including rufous fantail and Micronesian starling. The Mariana crow was dispersed around the periphery of the island in steep forested land-cover types. In contrast, the Rota white-eye was restricted to the high-elevation mesa. Only for the white-throated ground-dove was there a significant difference among cover types, with lower occupancy in open field than in forested areas. Vegetation was included in the best-fit occupancy models for yellow bittern, black drongo, Micronesian myzomela, and Micronesian starling, but vegetation type was not a significant variable nor included in the top models for the remaining five species: white tern, island collared-dove, Mariana fruit-dove, collared kingfisher, and rufous fantail. Given declining population trends, the Rota bird-monitoring program could benefit from establishing threshold and alert limits and identifying alternative research and management actions. Continued monitoring and demographic sampling, in conjunction with ecological studies, are needed to understand why most bird species on Rota are declining, identify the causative agents, and assess effectiveness of conservation actions, especially for the Mariana crow

    Algorithm to Diagnose Leaks or Blockages Downstream of the Secondary Air Injection Reaction (SAIR) Pressure Sensor

    Get PDF
    A control module and method for an exhaust system of an engine can include a secondary air intake (SAI) pressure module that monitors SAI pressure. An accumulation module can accumulate an SAI string length based on the monitored SAI pressure. A calculation module can determine an average SAI string length based on the accumulated SAI string length. A determination module can determine an operating characteristic of the vehicle exhaust based on the average SAI string length

    Density estimation of sound-producing terrestrial animals using single automatic acoustic recorders and distance sampling

    Get PDF
    Financial support was provided by the NSF award #1345247 to D. Price, P. Hart, E. Stacy, and M. Takabayashi. ESG is funded by the Juan de la Cierva program from the Spanish Government (IJCI-2015-24947). TAM thanks partial support by CEAUL (funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal, through the project UID/MAT/00006/2013). RJC is partially funded through the U.S. Geological Survey and the University of St. Andrews.Obtaining accurate information on the distribution, density, and abundance of animals is an important first step toward their conservation. Methodological approaches using automatic acoustic recorders for species that communicate acoustically are gaining increased interest because of their advantages over traditional sampling methods. In this study, we created and evaluated a protocol to estimate population density, which can be used to compute abundance of terrestrial sound-producing animals from single automatic acoustic recorders and using an automatic detection algorithm. The protocol uses cue rates from the target species, environmental conditions, and an estimate of the distance of the individual to the recorder based on the power of the received sound. We applied our protocol to estimate the density of a Hawaiian forest bird species (Hawaiˊi ˊAmakihi [Chlorodrepanis virens]) on the island of Hawaiˊi, USA. We validated our approach by comparing our density estimates with those calculated at the same stations using a traditional point-transect distance sampling method based on human observations. Overall density estimates based on recorded signals were lower than those based on human observations, but 95% confidence intervals of the two density estimates overlapped. This study presents a relatively simple but effective protocol for estimating animal density using single automatic acoustic recorders. Our protocol may easily be adapted to other sound-emitting terrestrial animals.Publisher PDFPeer reviewe

    Two Iranian families with a novel mutation in GJB2 causing autosomal dominant nonsyndromic hearing loss

    Full text link
    Mutations in GJB2 , encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region. © 2011 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83755/1/33209_ftp.pd

    Implications of climate change for agricultural productivity in the early twenty-first century

    Get PDF
    This paper reviews recent literature concerning a wide range of processes through which climate change could potentially impact global-scale agricultural productivity, and presents projections of changes in relevant meteorological, hydrological and plant physiological quantities from a climate model ensemble to illustrate key areas of uncertainty. Few global-scale assessments have been carried out, and these are limited in their ability to capture the uncertainty in climate projections, and omit potentially important aspects such as extreme events and changes in pests and diseases. There is a lack of clarity on how climate change impacts on drought are best quantified from an agricultural perspective, with different metrics giving very different impressions of future risk. The dependence of some regional agriculture on remote rainfall, snowmelt and glaciers adds to the complexity. Indirect impacts via sea-level rise, storms and diseases have not been quantified. Perhaps most seriously, there is high uncertainty in the extent to which the direct effects of CO2 rise on plant physiology will interact with climate change in affecting productivity. At present, the aggregate impacts of climate change on global-scale agricultural productivity cannot be reliably quantified

    Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis

    Get PDF
    Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    corecore