60 research outputs found

    A protocol for the systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain

    Get PDF
    OBJECTIVE: Thigmotaxis is an innate predator avoidance behaviour of rodents and is enhanced when animals are under stress. It is characterised by the preference of a rodent to seek shelter, rather than expose itself to the aversive open area. The behaviour has been proposed to be a measurable construct that can address the impact of pain on rodent behaviour. This systematic review will assess whether thigmotaxis can be influenced by experimental persistent pain and attenuated by pharmacological interventions in rodents. SEARCH STRATEGY: We will conduct search on three electronic databases to identify studies in which thigmotaxis was used as an outcome measure contextualised to a rodent model associated with persistent pain. All studies published until the date of the search will be considered. SCREENING AND ANNOTATION: Two independent reviewers will screen studies based on the order of (1) titles and abstracts, and (2) full texts. DATA MANAGEMENT AND REPORTING: For meta-analysis, we will extract thigmotactic behavioural data and calculate effect sizes. Effect sizes will be combined using a random-effects model. We will assess heterogeneity and identify sources of heterogeneity. A risk-of-bias assessment will be conducted to evaluate study quality. Publication bias will be assessed using funnel plots, Egger’s regression and trim-and-fill analysis. We will also extract stimulus-evoked limb withdrawal data to assess its correlation with thigmotaxis in the same animals. The evidence obtained will provide a comprehensive understanding of the strengths and limitations of using thigmotactic outcome measure in animal pain research so that future experimental designs can be optimised. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the review findings through publication and conference presentation

    The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews [version 3; referees: 3 approved]

    Get PDF
    Background: The extraction of data from the reports of primary studies, on which the results of systematic reviews depend, needs to be carried out accurately. To aid reliability, it is recommended that two researchers carry out data extraction independently. The extraction of statistical data from graphs in PDF files is particularly challenging, as the process is usually completely manual, and reviewers need sometimes to revert to holding a ruler against the page to read off values: an inherently time-consuming and error-prone process. Methods: To mitigate some of the above problems we integrated and customised two existing JavaScript libraries to create a new web-based graphical data extraction tool to assist reviewers in extracting data from graphs. This tool aims to facilitate more accurate and timely data extraction through a user interface which can be used to extract data through mouse clicks. We carried out a non-inferiority evaluation to examine its performance in comparison with participants’ standard practice for extracting data from graphs in PDF documents. Results: We found that the customised graphical data extraction tool is not inferior to users’ (N=10) prior standard practice. Our study was not designed to show superiority, but suggests that, on average, participants saved around 6 minutes per graph using the new tool, accompanied by a substantial increase in accuracy. Conclusions: Our study suggests that the incorporation of this type of tool in online systematic review software would be beneficial in facilitating the production of accurate and timely evidence synthesis to improve decision-making

    The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews [version 2; referees: 3 approved]

    Get PDF
    Background: The extraction of data from the reports of primary studies, on which the results of systematic reviews depend, needs to be carried out accurately. To aid reliability, it is recommended that two researchers carry out data extraction independently. The extraction of statistical data from graphs in PDF files is particularly challenging, as the process is usually completely manual, and reviewers need sometimes to revert to holding a ruler against the page to read off values: an inherently time-consuming and error-prone process. Methods: To mitigate some of the above problems we integrated and customised two existing JavaScript libraries to create a new web-based graphical data extraction tool to assist reviewers in extracting data from graphs. This tool aims to facilitate more accurate and timely data extraction through a user interface which can be used to extract data through mouse clicks. We carried out a non-inferiority evaluation to examine its performance in comparison to standard practice. Results: We found that the customised graphical data extraction tool is not inferior to users’ prior preferred current approaches. Our study was not designed to show superiority, but suggests that there may be a saving in time of around 6 minutes per graph, accompanied by a substantial increase in accuracy. Conclusions: Our study suggests that the incorporation of this type of tool in online systematic review software would be beneficial in facilitating the production of accurate and timely evidence synthesis to improve decision-making

    Age-dependent effects of protein restriction on dopamine release

    Get PDF
    FUNDING AND DISCLOSURE This work was supported by the Biotechnology and Biological Sciences Research Council [grant # BB/M007391/1 to J.E.M.], the European Commission [grant # GA 631404 to J.E.M.], The Leverhulme Trust [grant # RPG-2017-417 to J.E.M.] and the TromsĂž Research Foundation [grant # 19-SG-JMcC to J. E. M.). The authors declare no conflict of interest. ACKNOWLEDGEMENTS The authors would like to acknowledge the help and support from the staff of the Division of Biomedical Services, Preclinical Research Facility, University of Leicester, for technical support and the care of experimental animals.Peer reviewedPublisher PD

    Connectivity within and among a Network of Temperate Marine Reserves

    Get PDF
    Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support

    A Genome-Wide Association Study of Diabetic Kidney Disease in Subjects With Type 2 Diabetes

    Get PDF
    dentification of sequence variants robustly associated with predisposition to diabetic kidney disease (DKD) has the potential to provide insights into the pathophysiological mechanisms responsible. We conducted a genome-wide association study (GWAS) of DKD in type 2 diabetes (T2D) using eight complementary dichotomous and quantitative DKD phenotypes: the principal dichotomous analysis involved 5,717 T2D subjects, 3,345 with DKD. Promising association signals were evaluated in up to 26,827 subjects with T2D (12,710 with DKD). A combined T1D+T2D GWAS was performed using complementary data available for subjects with T1D, which, with replication samples, involved up to 40,340 subjects with diabetes (18,582 with DKD). Analysis of specific DKD phenotypes identified a novel signal near GABRR1 (rs9942471, P = 4.5 x 10(-8)) associated with microalbuminuria in European T2D case subjects. However, no replication of this signal was observed in Asian subjects with T2D or in the equivalent T1D analysis. There was only limited support, in this substantially enlarged analysis, for association at previously reported DKD signals, except for those at UMOD and PRKAG2, both associated with estimated glomerular filtration rate. We conclude that, despite challenges in addressing phenotypic heterogeneity, access to increased sample sizes will continue to provide more robust inference regarding risk variant discovery for DKD.Peer reviewe

    A protocol for the systematic review and meta-analysis of thigmotactic behaviour in the open field test in rodent models associated with persistent pain

    No full text
    Objective Thigmotaxis is an innate predator avoidance behaviour of rodents and is enhanced when animals are under stress. It is characterised by the preference of a rodent to seek shelter, rather than expose itself to the aversive open area. The behaviour has been proposed to be a measurable construct that can address the impact of pain on rodent behaviour. This systematic review will assess whether thigmotaxis can be influenced by experimental persistent pain and attenuated by pharmacological interventions in rodents.Search strategy We will conduct search on three electronic databases to identify studies in which thigmotaxis was used as an outcome measure contextualised to a rodent model associated with persistent pain. All studies published until the date of the search will be considered.Screening and annotation Two independent reviewers will screen studies based on the order of (1) titles and abstracts, and (2) full texts.Data management and reporting For meta-analysis, we will extract thigmotactic behavioural data and calculate effect sizes. Effect sizes will be combined using a random-effects model. We will assess heterogeneity and identify sources of heterogeneity. A risk-of-bias assessment will be conducted to evaluate study quality. Publication bias will be assessed using funnel plots, Egger’s regression and trim-and-fill analysis. We will also extract stimulus-evoked limb withdrawal data to assess its correlation with thigmotaxis in the same animals. The evidence obtained will provide a comprehensive understanding of the strengths and limitations of using thigmotactic outcome measure in animal pain research so that future experimental designs can be optimised. We will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines and disseminate the review findings through publication and conference presentation
    • 

    corecore