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Abstract

Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo drastic reorganization.
However, timing and mechanisms of structural diploidization over evolutionary timescales are still poorly known. As
transposable elements (TEs) represent major and labile components of plant genomes, they likely play a pivotal role in
fuelling genome changes leading to long-term diploidization. Here, we exploit the 4.5 MY old allopolyploid Nicotiana
section Repandae to investigate the impact of TEs on the evolutionary dynamics of genomes. Sequence-specific amplified
polymorphisms (SSAP) on seven TEs with expected contrasted dynamics were used to survey genome-wide TE insertion
polymorphisms. Comparisons of TE insertions in the four allopolyploid species and descendents of the diploid species most
closely related to their actual progenitors revealed that the polyploids showed considerable departure from predicted
additivity of the diploids. Large numbers of new SSAP bands were observed in polyploids for two TEs, but restructuring for
most TE families involved substantial loss of fragments relative to the genome of the diploid representing the paternal
progenitor, which could be due to changes in allopolyploids, diploid progenitor lineages or both. The majority of non-
additive bands were shared by all polyploid species, suggesting that significant restructuring occurred early after the
allopolyploid event that gave rise to their common ancestor. Furthermore, several gains and losses of SSAP fragments were
restricted to N. repanda, suggesting a unique evolutionary trajectory. This pattern of diploidization in TE genome fractions
supports the hypothesis that TEs are central to long-term genome turnover and depends on both TE and the polyploid
lineage considered.
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Introduction

Recent investigations of allopolyploid taxa (i.e. species originat-

ing from hybridization of divergent genomes associated with

doubling of chromosomes) have revealed that their genomes are

dynamic, undergoing drastic structural and functional alterations

referred to as diploidization [1,2,3,4,5]. Such genome differenti-

ation seems to go along with the stabilization of nascent polyploids,

but our understanding of these processes occurring over

thousands/millions of years is still far from comprehensive

[6,7,8,9,10].

Diploidization involves intra- and intergenomic rearrange-

ments, including elimination of DNA sequences and amplification

or reduction of repetitive sequences. Genomic reorganization

could decrease pairing between homeologous chromosome and/or

promote reproductive isolation between nascent polyploid lineages

and their progenitors [7,11,12,13,14,15]. Accordingly, hybridiza-

tion has been highlighted as ‘genomic shock’, inducing rapid

genomic reorganization [14,16,17].

A substantial fraction of plant genomes is made of transposable

elements (TEs), thus mechanisms triggering long-term diploidiza-

tion are likely to involve such repetitive sequences

[18,19,20,21,22,23]. Comparative genomics between descendants

of progenitor diploids and polyploids is scarce, but revealed that

TE genomic fractions undergo considerable changes subsequent to

polyploidy (reviewed in [14]). In addition to transpositional

activity, TEs can be substrates for unequal or illegitimate

recombination, potentially resulting in substantial chromosomal

repatterning [24,25,26,27].

Nicotiana (Solanaceae) is a promising genus to explore the long-

term impact of allopolyploidy on genome dynamics [28,29,30].

Several studies of Nicotiana species have produced a well-dated

phylogenetic tree revealing several allopolyploid groups of

different ages [31,32,33] and highlighted the impact of repetitive

sequences on long-term diploidization [34]. Allopolyploid N.

PLOS ONE | www.plosone.org 1 November 2012 | Volume 7 | Issue 11 | e50352



tabacum (up to 200 KY old) and synthetic allopolyploids showed

restructuring of TE fractions, with massive losses of some TE

sequences [13,34,35,36]. Older Nicotiana allopolyploids have

revealed considerable exchange of repetitive sequences among

subgenomes [34,37] and offered convincing evidence that a nearly

complete structural differentiation of homeologous genomes

occurred in less than 5 MY. However, to what extent various

TE sequences participated in this high genomic turnover remains

an open question. Nicotiana section Repandae (four extant species

derived from a common allopolyploid ancestor) offers the

opportunity to understand the molecular mechanisms underlying

long-term diploidization. This clade originated 4.5 MY ago from

hybridization between ancestors of extant species of N. sections

Sylvestres and Trigonophyllae as maternal and paternal progenitors,

respectively [32,37]. The allopolyploid section currently includes

N. nudicaulis, N. repanda, N. stocktonii and N. nesophila, and their

evolutionary relationships are well known. Nicotiana nudicaulis is

sister to, and morphologically distinct from, the three remaining

species; it diverged 2–3 MY ago, whereas N. stocktonii and N.

nesophila diverged from N. repanda more recently (1 MY ago). These

allopolyploid genomes showed considerable sequence turnover as

well as substantial change in genome size [34,37,38].

Here, we investigated dynamics of seven TEs: two short

interspersed nuclear elements (SINEs: Au and TS), two miniature

inverted-repeat transposable elements (Stowavay MITEs: Ns1 and

Nt2) and three long terminal repeats (LTR) retrotransposons (i.e.

the copia-like Tnt1 and Tnt2, and the short terminal repeat

retrotransposon in miniature, TRIM). These TEs are known to

display contrasting evolutionary dynamics in N. tabacum and its

diploid progenitors N. sylvestris and N. tomentosiformis, providing

useful evidence about their overall dynamics in genus Nicotiana.

Tnt2 is a young, active element, abundant and highly conserved in

N. tabacum (Deloger and Grandbastien, unpublished data). Tnt2 is

2- to 3-fold more abundant in N. sylvestris than in N. tomentosiformis,

with few shared insertions and much amplified numbers in

response to allopolyploidy [36]. To contrast with Tnt2, we selected

an older, less abundant Tnt1 population [39], displaying many

common insertions shared by N. sylvestris and N. tomentosiformis and

limited proliferation in response to allopolyploidy [13,36]. TRIM

was selected because it is an ancient family conserved among

monocotyledonous and dicotyledonous plants [40], and is

heterogeneous in N. tabacum (Deloger and Grandbastien, unpub-

lished data), indicating low levels of recent amplification. The two

SINE families also show contrasting evolutionary patterns. TS

elements are young composite SINEs that recently increased in the

N. tabacum lineage [41,42], whereas Au elements are ancient SINEs

conserved among monocotyledonous and dicotyledonous plants

[43]. They are less conserved, albeit more abundant, than TS

elements in N. tabacum [41]. Finally, we included two MITEs, Ns1

and Nt2, for which only sequence data are available [44], as

representative of DNA transposons.

This set of contrasting TE populations maximizes the chances of

assessing differential TE dynamics during long-term polyploid

evolution. We investigated their patterns of insertion polymor-

phisms within the well-defined phylogenetic framework offered by

Nicotiana section Repandae, using a genome-wide sequence-specific

amplified polymorphism (SSAP) approach [45]. Our aims were to

assess (i) to what extent TE dynamics participated in the long-term

genome turnover of polyploid Nicotiana and (ii) whether different

TE types presented specific evolutionary trajectories after poly-

ploidization. We show that restructuring of TE genomic fractions

in allopolyploids is dependent on both the polyploid species and

the TE, with some TE populations showing evidence of

proliferation in specific polyploid species. This pattern supports

the high levels of genome turnover reported from cytogenetics

approaches [34] and indicates that TE genome fractions have

been highly reorganized during long-term diploidization.

Materials and Methods

Plant Material
Nicotiana accessions were collected from various germplasm

collections (Table 1). We selected four accessions of N. sylvestris

(section Sylvestres), the only species in the section and the most

closely related to the maternal progenitor of section Repandae, and

six accessions of N. obtusifolia, formerly known as N. trigonophylla,

(section Trigonophyllae), a species most closely related to the diploid

paternal progenitor. Fifteen accessions of allopolyploid section

Repandae represented the four currently recognized species: N.

nudicaulis (five accessions), N. repanda (six accessions), N. stocktonii

(two accessions) and N. nesophila (two accessions). Sequencing of the

polymorphic plastid trnS-G locus further confirmed the taxonomic

status of most accessions (data not shown).

Nicotiana nesophila and N. stocktonii are morphologically similar

and genetically closely related ([37]; also see below). As they likely

represent taxonomic groups rather than biological species (S.

Knapp, NHM London, personal communication), we pooled

them as the Revillagigedo Islands (the oceanic Mexican islands

where they occur naturally) taxa. Therefore, the statistical

treatment of SSAP fragments was conduced within and among

five taxa with nearly balanced sampling size: (i) N. obtusifolia

(section Trigonophyllae; tri1-tri6), (ii) N. sylvestris (section Sylvestres;

syl1-syl4), (iii) N. nudicaulis (nud1-nud5), (iv) N. repanda (rep1-rep6)

and (v) Revillagigedo-Islands species (incl. N. nesophila and N.

stocktonii; isl1-isl4).

Sequence-specific Amplification Polymorphism (SSAP)
The SSAP technique [45] was applied as described in [46],

using the 33P-labelled TE primers described in Table 2. The

procedure was repeated on each individuals to ensure reproduc-

ibility of profiles. Reproducible bands were manually scored as

present (1) or absent (0) in each accession and recorded in a data

matrix for each TE.

Phylogenetic Reconstruction
Relationships among Nicotiana accessions assessed with SSAP

were evaluated by the neighbor-net method using SplitsTree 4.10

[47,48]. The neighbor-net diagram was produced from distances

computed as the proportion of positions at which two binary

sequences differ (UncorrectedP option). Bootstrap support was

estimated with 1000 replicates, and a single diagram representing

a 95% confidence set for the networks was estimated. This

procedure was applied to each TE dataset independently.

Genetic Diversity for the Different TEs
Allele frequencies of SSAP bands were computed through the

Bayesian method of Zhivotovsky [49] using non-uniform prior

distributions of allele frequencies with FIS = 1 in AFLP-surv

[50,51]. The frequency of recessive alleles, estimated by taking

the sample size into account, was used to calculate the proportion

of polypmorphic loci at the 5% level and Nei’s gene diversity for

each taxon as well as each TE.

Distribution of the SSAP Fragments within and Among
Taxa

For each TE, SSAP bands specific to N. sylvestris and N. obtusifolia

and those shared by both were counted. Whether the proportion

Transposable Elements and Diploidization
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of specific SSAP bands was significantly different in the two taxa

was assessed by Yate’s one-sided Chi-square test, using SPSS 16.0.

SSAP profiles from N. sylvestris and N. obtusifolia were summed,

and bands in the Repandae taxa showing deviation from parental

additivity were counted for each allopolyploid taxon and each TE.

All proportions were presented with 95% confidence intervals,

following [52]. Differences in proportions were tested by multiple

Yate’s one-sided Chi-square tests (or Fisher exact tests where

appropriate), using SPSS 16.0, and significance was assessed at

a= 0.05 with sequential Bonferroni correction for multiple

comparisons [53].

Table 1. Nicotiana accessions investigated in this study.

Section Species Accession name Abbreviation Source

Sylvestres (2n = 2x = 24) Nicotiana sylvestris A047503026 syl1 Nijmegen Botanical Garden (NL) b,c

Nicotiana sylvestris TW137 syl2 USDA (US) d

Nicotiana sylvestris ITB626 syl3 Tobacco Institute of Bergerac (F) e

Nicotiana sylvestris 934750319 syl4 Nijmegen Botanical Garden (NL) b

Trigonophyllae (2n = 2x = 24) Nicotiana obtusifolia a ITB614 tri1 Tobacco Institute of Bergerac (F) e,f

Nicotiana obtusifolia a TW98 tri2 USDA (US) d

Nicotiana obtusifolia TW143 tri3 USDA (US) d

Nicotiana obtusifolia ITB627 tri4 Tobacco Institute of Bergerac (F) e,f

Nicotiana obtusifolia ITB518 tri5 Tobacco Institute of Bergerac (F) e

Nicotiana obtusifolia 894750176 tri6 Nijmegen Botanical Garden (NL) b

Repandae (2n = 4x = 48) Nicotiana nudicaulis 964750051 nud1 Nijmegen Botanical Garden (NL) b

Nicotiana nudicaulis A14750212 nud2 Nijmegen Botanical Garden (NL) b

Nicotiana nudicaulis A14750211 nud3 Nijmegen Botanical Garden (NL) b

Nicotiana nudicaulis 964750114 nud4 Nijmegen Botanical Garden (NL) b

Nicotiana nudicaulis TW90 nud5 USDA (US) d

Nicotiana repanda 994750061 rep1 Nijmegen Botanical Garden (NL) b

Nicotiana repanda 994750063 rep2 Nijmegen Botanical Garden (NL) b

Nicotiana repanda 994750064 rep3 Nijmegen Botanical Garden (NL) b

Nicotiana repanda 994750067 rep4 Nijmegen Botanical Garden (NL) b

Nicotiana repanda 994750068 rep5 Nijmegen Botanical Garden (NL) b

Nicotiana repanda TW110 rep6 USDA (US) d

Nicotiana nesophila ITB609 isl1 Tobacco Institute of Bergerac (F) e,f

Nicotiana nesophila TW87 isl2 USDA (US) d

Nicotiana stocktonii 974750101 isl3 Nijmegen Botanical Garden (NL) b

Nicotiana stocktonii TW126 isl4 USDA (US) d

alabeled as Nicotiana palmeri, a name now considered a synonym of N. obtusifolia.
bhttp://www.bgard.science.ru.nl/.
caccession kindly provided by Dr P. Maliga, Rutgers University, NJ, USA.
dhttp://www.ars-grin.gov/.
ehttp://www.imperial-tobacco-bergerac.com/.
fdirect donations from T. H. Goodspeed [60].
doi:10.1371/journal.pone.0050352.t001

Table 2. Transposable elements investigated in this study.

Name Type a Locus SSAP primer (name and sequence 59-39) Reference

Au SINE U35619 Au-1F: AAG GCT GCG TAC AAT AGA CCC [43]

TS SINE D17453 TS-a: CTC CCC ACC TTG CTC TTG [42]

Ns1 MITE X14059 Ns1-1F: TCG TGC TCA GTC AAA CAG GTT C [44]

Nt2 MITE X51599 Nt2-1F: AAC TCC GTG TCG AGT CAA AC [44]

Tnt1 LTR X13777 Tnt1-Ol16: TTC CCA CCT CAC TAC AAT ATC GC [39]

Tnt2 LTR EF437960 Tnt2d: CCG AAC CTC GTA AAT TCT GGT G [36]

TRIM LTR AF231351 TRIM-b: CCC GAA AGA GCC GAT GTG [40]

aSINE for short interspersed nuclear elements; MITE for miniature inverted-repeat transposable elements; LTR for long terminal repeat retrotransposons.
doi:10.1371/journal.pone.0050352.t002

Transposable Elements and Diploidization
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Multiple Yate’s one-sided Chi-square tests with sequential

Bonferroni correction (a= 0.05) were applied to the proportion

of deviating SSAP bands and the ratio between new vs. missing

SSAP bands, representing the relative importance of gain and loss.

The distribution of deviating SSAP bands was also recorded as

bands specific to each polyploid taxon or shared by two or three

polyploid taxa. The total numbers of deviating SSAP bands were

compared with one-way ANOVA and post-hoc pair-wise compar-

isons based on Tukey’s honestly significant difference test. Finally,

the parental origin of the SSAP bands lost in the polyploid taxa

was recorded for each TE and deviation from the 1:1 ratio was

tested by Yate’s one-sided Chi-square test, using SPSS 16.0.

Results

Phylogenetic Analysis of TE Insertion Polymorphisms in
Section Repandae

SSAP gave a total of 594 reproducible bands: 108 with Au, 62

with TS, 89 with Ns1, 86 with Nt2, 80 with Tnt1, 97 with Tnt2

and 72 with TRIM (Table S1 and Figure S1). The neighbor-net

for each TE resolved all accessions into taxonomic species

(Figure 1). Nicotiana sylvestris (syl) and N. obtusifolia (tri) accessions

formed two well-supported clusters. Accessions from section

Repandae also formed coherent species groups (i.e. N. nudicaulis

(nud), N repanda (rep), N. nesophila and N. stocktonii). The last two

taxonomic species were close to each other and formed a

Revillagigedo-Islands cluster (isl).

Most neighbor-nets results supported the hybrid origin of the

Repandae clade since they were placed at the intersection of the

splits connecting them to the descendents of the parental

progenitors. Nicotiana nudicaulis, N. nesophila and N. stocktonii were

usually clustered, whereas N. repanda formed a more distant group.

Star-like topologies, such as revealed for Au and Tnt2, indicated

that the allopolyploid lineages share similarities with both parents,

but also that N. repanda is differentiated from the other polyploids.

Topologies for Nt2, Tnt1 and TRIM placed N. repanda closer to N.

sylvestris, whereas Ns1 placed N. repanda closer to N. obtusifolia, but

are in agreement with a hybrid origin of N. repanda. In marked

contrast, the topology for TS clustered all allopolyploid species

into one group, highlighting a particular dynamic of TS as

compared to the other TEs in the polyploid genomes.

Patterns of differentiation for Au and TS were not significantly

associated with those of other TEs (Table S2). Au and TS each

had specific distributions among taxa and the two SINEs were

distinct from the other TEs. In contrast, MITEs and LTR

retrotransposons produced similar patterns of differentiation.

Genetic Diversity and Distribution of TE Insertions in the
Diploid Progenitor Taxa

Transposable elements showed significant differences in number

of SSAP bands shared by both diploid taxa (Table 3). Low

frequencies of shared bands (,8%) were observed for TS, Tnt1

and Tnt2, higher frequencies (.16%) for TRIM and Au, and

intermediate levels for Ns1 and Nt2. The number of SSAP bands

and Nei’s gene diversity (Figure 2) showed contrasting tendencies

and suggested different genetic loads for most TEs among diploid

taxa.

For Au and TS, the number of bands was significantly lower in

N. obtusifolia than N. sylvestris, whereas Nei’s gene diversity was

significantly higher, indicating that SINE insertions are numerous,

but mostly fixed in N. sylvestris. The number of Ns1 bands and

Nei’s gene diversity were significantly lower in N. obtusifolia than in

N. sylvestris, whereas the opposite was observed for Nt2. This

indicates that when MITE insertions are numerous in a diploid

species, they are not fixed and segregate in the population. For

LTR retrotransposons, the number of bands was significantly

different between diploid progenitors, except for TRIM. Tnt1

showed more bands within N. obtusifolia, whereas Tnt2 showed

more within N. sylvestris, but Nei’s gene diversity was not

significantly different.

Genetic Diversity in the Allopolyploid Taxa and Deviation
from Expected Profiles

The number of SSAP bands and genetic diversity within

allopolyploid taxa was variable for all TEs (Figure 2). In particular,

N. nudicaulis and N. repanda revealed similar levels of Nei’s gene

diversity for most TEs, except Nt2. Genetic diversity was

significantly lower within the Revillagigedo-Islands species. Nota-

ble exceptions to this otherwise consistent pattern were observed

with the SINEs. Au showed numerous bands but low gene

diversity in all allopolyploids. In contrast, TS revealed significantly

more bands and higher gene diversity in polyploids compared to

diploids. In particular, TS revealed significantly higher diversity

than other TEs in the Revillagigedo-Islands species.

For all TEs, SSAP profiles in the allopolyploid taxa strongly

deviated from expected additivity (Table 4), which was roughly

similar for all TEs in each polyploid taxon (average: 85.1%) with

few significant differences: only Au in N. nudicaulis had a

significantly lower proportion of non-additive bands than TS

and Tnt2 (Fisher exact test; p = 0.0015 and p = 0.0093, respec-

tively).

Distribution of New SSAP Bands in Allopolyploids
SSAP detected up to 170 bands in allopolyploid accessions that

were not present in any of the diploids, representing a 39.9%

increase in the expected number of bands relative to the

progenitors (Table 5). TS and Tnt2 showed a significantly higher

proportion of new bands than other TEs, except Nt2, whereas

TRIM showed significantly lower proportion of new bands

compared to TS and Tnt2.

New SSAP bands were highly similar among polyploid lineages

(Table 5) and unevenly distributed among groups of taxa (Table 6).

Comparisons involving N. repanda showed a low proportion of

shared new bands, especially for Ns1 and Nt2. Less than half the

total new SSAP bands were restricted to only one polyploid taxon,

with a maximum of 16.5% specific to N. repanda, 14.7% specific to

N. nudicaulis and 7.1% specific to the Revillagigedo-Islands species;

26.5% of new Tnt2 bands were specific to N. repanda.

Distribution and Origin of Lost SSAP Bands in the
Allopolyploids

Among the 426 SSAP bands present in diploids, 351 bands

(82.4%) were not detected in one or more allopolyploid taxa

(Table 5). Most TEs had similar levels of missing bands. Most

SSAP bands missing among polyploid lineages (Table 5) were

unevenly distributed among groups (Table 6). Few missing SSAP

bands were restricted to only one polyploid taxon (14.8% in N.

repanda, 5.7% in N. nudicaulis and 3.4% in the Revillagigedo-Islands

species). Band absence was comparatively important in N. repanda

for Ns1 (22.4%) and Nt2 (23.5%). SSAP bands that were missing

in the polyploid taxa were mostly of N. obtusifolia origin (Figure 3).

This was particularly true in all polyploids for Au and Nt2, in N.

nudicaulis and N. repanda for TS, in N. repanda and Revillagigedo-

Islands species for TRIM, and in N. repanda for Tnt1.

For most TEs, the proportion of missing SSAP bands was

significantly higher than that for new bands. As exceptions, new

Transposable Elements and Diploidization
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Figure 1. Phylogenetic reconstruction of Nicotiana section Repandae. 95% confidence neighbor-net diagrams based on SSAP profiles: (a) Au,
(b) TS, (c) Ns1, (d) Nt2, (e) Tnt1, (f) Tnt2 and (g) TRIM. (h) Calibrated species tree redrawn from [32,37], with genome sizes taken form [38]. TRI = diploid
N. obtusifolia representing the paternal progenitor; SYL = diploid N. sylvestris representing the maternal progenitor; NUD = allopolyploid N. nudicaulis;

Transposable Elements and Diploidization
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bands were significantly more frequent for TS in all taxa, Nt2 in N.

nudicaulis and Tnt2 in N. repanda (Table 5).
Discussion

Evolutionary Dynamics of Repandae Genomes
For extant descendents of the progenitors of N. section Repandae

as well as polyploid taxa, phylogenetic relationships among have

been unambiguously identified [32,37]. Phylogenetic networks

REP = allopolyploid N. repanda; ISL = allopolyploids from the Revillagigedo-Islands (N. nesophila and N. stocktonii). See Table 1 for details on the 25
accessions.
doi:10.1371/journal.pone.0050352.g001

Figure 2. Genetic diversity and distribution of TE insertions in Nicotiana section Repandae. (a) Number of SSAP bands and (b) Nei’s gene
diversity for each TE within all Nicotiana taxa related to the allopolyploid section Repandae. Error bars represent the standard error. TRI = diploid N.
obtusifolia representing the paternal progenitor; SYL = diploid N. sylvestris representing the maternal progenitor; NUD = allopolyploid N. nudicaulis;
REP = allopolyploid N. repanda; ISL = allopolyploids from the Revillagigedo-Islands (N. nesophila and N. stocktonii).
doi:10.1371/journal.pone.0050352.g002

Transposable Elements and Diploidization
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reconstructed with SSAP supported the hybrid origin of section

Repandae. In contrast to analyses based on morphology and

molecular analyses that placed N. nudicaulis as sister to the other

polyploids [32,37], SSAP markers grouped N. nudicaulis and the

Revillagigedo-Islands taxa, whereas N. repanda consistently fell as a

more distant group. This indicates that the TE fraction of N.

repanda evolved with a unique trajectory. Nicotiana repanda indeed

exhibited losses for all TEs and specific amplification of Tnt1,

Tnt2 and TS (Figure 4). Furthermore, missing bands in N. repanda

were mostly of N. obtusifolia origin for Au, Nt2 and Tnt1, and of N.

sylvestris origin for Ns1, explaining why N. repanda was more closely

associated with the maternal or the paternal progenitors,

respectively. Phylogenetic trees derived from TE insertion patterns

thus reveal specific evolutionary dynamics of different TE

fractions, which may be loosely similar to evolutionary relation-

ships among species [54].

Molecular cytogenetics revealed genomic restructuring of

Nicotiana genomes in less than 5 million years [34]. The present

analysis highlights considerable restructuring of TE fractions in

Repandae polyploids. SSAP addresses TE dynamics at a genome-

wide scale [54], but also reveals molecular changes at insertion

sites, such as those highlighted with AFLP [13]. Statistically

relevant interpretations of the evolutionary dynamics of TEs using

SSAP should thus include as much biological diversity as possible

and require a large number of loci. Our interpretations are based

on conservative assumptions and focused on comparative patterns

among several categories of TE. Frequencies of missing bands

observed in Repandae allopolyploids were fairly constant for most

TEs (from 69.7% to 96.4%), but there was a six-fold variation in

new SSAP bands depending on which TE is being considered

(from 16.7% to 106%), indicating that new SSAP bands are novel

insertion events to a certain extant.

In addition, we cannot be certain of which aspects of TE

diversity in allopolyploids occurred during allopolyploid diversifi-

cation or preexisted at the diploid level. However, 17.6% of the

new SSAP bands were shared by all polyploid lineages, and over

25% for TS and Tnt2, which suggests these new bands appeared

soon after polyploidization, and before divergence of extant

Repandae species. As Tnt2 and TS show other evidence for recent

activity [36,41], a burst of amplification was possibly associated

with genomic shock of allopolyploidy. Similarly, 48.4% of the

missing bands were absent from all polyploids, suggesting that

restructuring around TE insertions occurred in the ancestral

polyploid taxon. For most TEs, polyploid taxa chiefly lost SSAP

bands of N. obtusifolia origin, indicating predominant restructuring

of paternal TE genome fractions in polyploids. We cannot exclude

the possibility that parental polymorphic insertions have disap-

peared in descendants of the diploid progenitors.

Contrasting Evolutionary Dynamics of the Different TEs
Few SSAP bands were shared by both diploid taxa. As expected,

TS and Tnt2 revealed low frequencies of shared bands, whereas

ancient TEs such as TRIM and Au [40,41] showed higher

frequencies of shared bands. Most TEs showed different levels of

diversity in the two diploids, suggesting considerable divergence of

TE genome fractions since the diversification of diploid taxa.

SINEs had comparable patterns of diversity in the diploids, but

showed contrasting dynamics at the polyploid level. A low ratio of

new/missing bands suggests deletion leading to band loss as the

dominant process for Au during diploidization, whereas a

relatively high ratio of new/missing SSAP bands in the polyploids

suggests TS transpositional activity during diploidization. Accord-

ingly, TS recently proliferated in the N. tabacum lineage, whereas

Au is less conserved [41].

MITEs showed differential dynamics in the diploid progenitors,

with Ns1 having been more active in N. sylvestris and Nt2 more

active in N. obtusifolia, both exhibiting a relatively high genetic

diversity in polyploids suggestive of TE fraction restructuring after

polyploidization. In particular, both MITEs showed a high new/

missing ratio in N. nudicaulis and a low new/missing ratio in N.

repanda. This suggests that these two host genomes have imposed

contrasting constraints on the restructuring of MITE fractions.

Table 3. Distribution of SSAP bands from the different TEs
within and among the diploid taxa (TRI for Nicotiana
obtusifolia and SYL for N. sylvestris).

Total TRI/SYL a TRI-sp a SYL-sp a

TRI-sp vs. SYL-
sp (Chi-Square)
b

Au 87 15 (17.2%) 37 (42.5%) 35 (40.2%) NS

TS 30 2 (6.7%) 15 (50.0%) 13 (43.3%) NS

Ns1 66 10 (15.1%) 18 (27.3%) 38 (57.6%) T,S: 12.89 ***

Nt2 58 8 (13.8%) 35 (60.3%) 15 (25.9%) T.S: 14.44 ***

Tnt1 56 3 (5.3%) 31 (55.4%) 22 (39.3%) NS

Tnt2 63 5 (7.9%) 19 (30.2%) 39 (61.9%) T,S: 12.45 ***

TRIM 66 11 (16.6%) 30 (45.5%) 25 (37.9%) NS

Total 426 54 185 187

aTRI/SYL = all SSAP bands that were shared by at least one accession in both
taxa; TRI-sp and SYL-sp = SSAP bands that are restricted to accessions of N.
obtusifolia and N. sylvestris, respectively.
bComparison of SSAP bands proportions that are specific to N. obtusifolia or N.
sylvestris as regards to the total number of bands observed within taxa (Yate’s
one-sided chi-square tests). NS: non-significant; T,S: significantly higher
proportion of SSAP bands specific to N. sylvestris as compared to N. obtusifolia-
specific bands; T.S: significantly higher proportion of SSAP bands specific to N.
obtusifolia as compared to N. sylvestris-specific bands;
***: significant at a= 0.001.
doi:10.1371/journal.pone.0050352.t003

Table 4. Proportions of SSAP bands showing deviation from the expected additivity of diploid profiles in the allopolyploid
Nicotiana section Repandae [NUD = N. nudicaulis; REP = N. repanda; ISL = Revillagigedo-Islands taxon (N. nesophila and N.
stocktonii)].

Aua TSa Ns1a Nt2a Tnt1a Tnt2a TRIMa

NUD 0.733 [0.628–0.819] 0.953 [0.830–0.992] 0.855 [0.737–0.927] 0.767 [0.651–0.855] 0.851 [0.738–0.922] 0.900 [0.788–0.959] 0.797 [0.668–0.886]

REP 0.840 [0.738–0.909] 0.927 [0.790–0.981] 0.912 [0.822–0.977] 0.867 [0.749–0.937] 0.875 [0.753–0.944] 0.864 [0.745–0.936] 0.774 [0.635–0.873]

ISL 0.817 [0.713–0.891] 0.891 [0.756–0.959] 0.903 [0.795–0.960] 0.809 [0.692–0.890] 0.844 [0.727–0.919] 0.912 [0.800–0.967] 0.769 [0.628–0.870]

a95% confidence interval between brackets.
doi:10.1371/journal.pone.0050352.t004
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For LTR retrotransposons, most deviating SSAP bands were

shared by all polyploid taxa, suggesting that restructuring in the

corresponding TE fractions occurred in the single ancestral

polyploid. Tnt2 had a high ratio of new/missing SSAP bands

suggesting amplification in the polyploids, in accordance with

observations in the young allopolyploid N. tabacum [36]. The ratio

of new/missing SSAP bands was, however, lower in N. nudicaulis

than in the other polyploids, indicating specific transposition of

Tnt2 in the ancestor of N. repanda and the island taxa. TRIM

showed the exact opposite pattern, with a relatively low ratio of

new/missing SSAP bands, suggesting shrinkage of the correspond-

ing TE fraction in the polyploids. This pattern was similar to Au

and correlates with the high sequence heterogeneity observed in N.

tabacum for these two ancient TE populations (Deloger and

Grandbastien,unpublished data, [41]). A significantly higher ratio

in N. nudicaulis also suggests specific restructuring of TRIM

insertions in the common ancestor of N. repanda and the island

taxa. An intermediate situation is observed for Tnt1, a retro-

transposon population displaying lower activity levels than Tnt2 in

N. tabacum [36].

Our survey of N. section Repandae provides evidence of

differential restructuring of each TE population in polyploids, as

well as between each allopolyploid species (summarized in

Figure 4). Possible mechanisms underlying such differential

dynamics are still unknown. The differential long-term dynamics

of TEs in allopolyploid section Repandae does not seem to be

primarily dependent on TE type, as the TEs investigated here

typically showed more contrasting dynamics within than among

TE categories (e.g. SINEs, MITEs, LTR retrotransposons).

Furthermore, TE populations selected here based on their

differential dynamics in N. tabacum displayed comparable dynamics

in the Repandea lineages, suggesting that their dynamics is

explained by intrinsic factors. Noticeably, contrasting dynamics

matched closely the TE relative abundance in diploids, which

supports the hypothesis that the accumulation of divergent TE

Table 6. One-way ANOVA on the distribution of new and
missing SSAP bands among the different groups of polyploid
lineages in Nicotiana section Repandae.

Sum of
Squares df

Mean of
Squares F p-value

New SSAP bands

Between groups 0.2855 6 0.0476 4.981 0.0006

Within groups 0.4005 42 0.0096

Lost SSAP bands

Between groups 1.0436 6 0.1739 44.100 ,0.0001

Within groups 0.1656 42 0.0038

doi:10.1371/journal.pone.0050352.t006

Figure 3. Origin of missing SSAP bands in the allopolyploid Nicotiana section Repandae. Missing bands are represented as the percentage
of bands of paternal origin. * indicates when missing SSAP bands of N. obtusifolia origin are significantly more frequent than bands of N. sylvestris.
Error bars represent the 95% confidence intervals. NUD = N. nudicaulis; REP: N. repanda; ISL: Revillagigedo-Islands taxa (N. nesophila and N. stocktonii).
doi:10.1371/journal.pone.0050352.g003
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loads in progenitors determines strength of the initial genome

shock and TE dynamics after hybridization [14,18,23,55].

Transposable Elements and Long-term Diploidization
Our results suggest that genome TE-associated restructuring

likely played a major role during the long-term diploidization of N.

section Repandae and was driven by differential dynamics of TEs

[14,56]. Although dynamics of TEs have a dramatic impact on

genome size [57], the specific dynamics of TE genome fraction

assessed here loosely fit changes in genome size among species of

section Repandae. The proliferation of the LTR retrotransposon

Tnt2 in N. repanda and the Revillagigedo-Islands taxa might

explain part of the genome size increase in these taxa (28.6% and

19.1%, respectively; [38]), but does not exclude the role of other

repetitive sequences [58]. Indeed, in a recent analysis of genomic

DNA using next generation sequencing technologies it has been

shown that much of the genomic expansion observed in N. repanda

is accounted for by chromovirus-like Ty3 gypsy elements (Renny

Byfield et al. unpublished data).

Evolutionary forces underlying observed genomic dynamics

during diploidization in allopolyploid section Repandae still remain

unclear. Noticeably, our results revealed significantly lower genetic

diversity in the Revillagigedo-Islands taxa for most TEs. It is

tempting to speculate that this reduced diversity results from

demographic factors such as bottlenecks during and after the

island colonization [59]. To what extent different evolutionary

forces other than genetic drift have shaped contrasting TE

arrangements in larger populations of N. nudicaulis and N. repanda

remains to be explored. This survey suggests that demographic

features of host taxa imposes evolutionary constraints and,

together with intrinsic features of TEs themselves, may have a

significant impact on the evolution of TE fractions [56]. Future

studies addressing the fate of TE insertions and genome evolution

under the influence of TEs should emphasize evolutionary

processes acting at the level of the host and sample naturally

occurring populations throughout their ranges.

Supporting Information

Figure S1 Example of SSAP profile obtained for TRIM
obtained on accessions of Nicotiana section Repandae.

(DOC)

Table S1 Number of SSAP bands in each accession of
Nicotiana section Repandae and measures of genetic
diversity.

(DOC)

Figure 4. Evolutionary dynamics of TEs in the allopolyploid Nicotiana section Repandae. Relative abundance of the various TE families in
the progenitor species (TRI = diploid N. obtusifolia representing the paternal progenitor; SYL = diploid N. sylvestris representing the maternal
progenitor) and evidence of sequence amplification (+) and loss (–) along the evolutionary path leading to the polyploid species (NUD = N. nudicaulis;
REP = N. repanda; ISL = Revillagigedo-Islands taxa, N. nesophila and N. stocktonii).
doi:10.1371/journal.pone.0050352.g004
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Table S2 Multiple Mantel tests for each TE.
(DOC)
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