21 research outputs found

    Papel de MKK6 en la regulación de la homeostasis energética por las hormonas tiroideas

    Get PDF
    La ganancia de peso corporal y la consecuencia más directa, la obesidad, es un factor de riesgo que lleva a enfermedades colaterales como pueden ser diabetes, problemas cardiovasculares o cáncer. Las hormonas tiroideas han demostrado tener una gran implicación en el gasto energético, así como en la ingesta, actuando principalmente de forma central. A nivel del hipotálamo, se ha demostrado que dichas hormonas tienen un papel fundamental sobre la termogénesis del tejido adiposo pardo (BAT, Brown adipose tissue) y sobre la lipogénesis hepática a través de la vía de las kinasas c-jun N- terminal (JNK, c-Jun N-terminal kinases). Otras rutas de las kinasas activadas por mitógeno, han demostrado ser de gran importancia también sobre la activación del BAT y del browning del tejido adiposo blanco. En concreto, datos previos han demostrado que MKK6 actúa sobre el gasto energético mediando la acción de las hormonas tiroideas de forma periférica. Debido a que la acción de dichas hormonas se ha descrito principalmente a nivel hipotalámico, se estudió la influencia de MKK6 sobre la función tiroidea a nivel central. Nuestros datos muestran que en condiciones de obesidad inducida por dieta, la deleción de MKK6 de forma central, impide la acción de las hormonas tioideas sobre el BAT y sobre el gasto energético

    κ-Opioid Signaling in the Lateral Hypothalamic Area Modulates Nicotine-Induced Negative Energy Balance

    Get PDF
    Several studies have reported that nicotine, the main bioactive component of tobacco, exerts a marked negative energy balance. Apart from its anorectic action, nicotine also modulates energy expenditure, by regulating brown adipose tissue (BAT) thermogenesis and white adipose tissue (WAT) browning. These effects are mainly controlled at the central level by modulation of hypothalamic neuropeptide systems and energy sensors, such as AMP-activated protein kinase (AMPK). In this study, we aimed to investigate the kappa opioid receptor (κOR)/dynorphin signaling in the modulation of nicotine’s effects on energy balance. We found that body weight loss after nicotine treatment is associated with a down-regulation of the κOR endogenous ligand dynorphin precursor and with a marked reduction in κOR signaling and the p70 S6 kinase/ribosomal protein S6 (S6K/rpS6) pathway in the lateral hypothalamic area (LHA). The inhibition of these pathways by nicotine was completely blunted in κOR deficient mice, after central pharmacological blockade of κOR, and in rodents where κOR was genetically knocked down specifically in the LHA. Moreover, κOR-mediated nicotine effects on body weight do not depend on orexin. These data unravel a new central regulatory pathway modulating nicotine’s effects on energy balanceThis research was funded from the Xunta de Galicia (R.N.: 2016-PG057; ML: 2016-PG068); Ministerio de Economía y Competitividad (MINECO) co-funded by the FEDER Program of EU (R.N.: RTI2018-099413-B-I00; C.D.: BFU2017-87721-P; M.L.: RTI2018-101840-B-I00); Atresmedia Corporación (RN and ML); Fundación BBVA (RN); “la Caixa” Foundation (ID 100010434), under the agreements LCF/PR/HR19/52160016 (R.N.) and LCF/PR/HR19/52160022 (M.L.); European Foundation for the Study of Diabetes (R.N.), ERC Synergy Grant-2019-WATCH- 810331 (R.N.) and Western Norway Regional Health Authority (Helse Vest RHF) (J.F.). P.S.-C. is the recipient of a fellowship from Xunta de Galicia (ED481B 2018/050). The CiMUS is supported by the Xunta de Galicia (2016-2019, ED431G/05). CIBER de Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIIIS

    Estradiol Regulates Energy Balance by Ameliorating Hypothalamic Ceramide-Induced ER Stress

    Get PDF
    Compelling evidence has shown that, besides its putative effect on the regulation of the gonadal axis, estradiol (E2) exerts a dichotomic effect on the hypothalamus to regulate food intake and energy expenditure. The anorectic effect of E2 is mainly mediated by its action on the arcuate nucleus (ARC), whereas its effects on brown adipose tissue (BAT) thermogenesis occur in the ventromedial nucleus (VMH). Here, we demonstrate that central E2 decreases hypothalamic ceramide levels and endoplasmic reticulum (ER) stress. Pharmacological or genetic blockade of ceramide synthesis and amelioration of ER stress selectively occurring in the VMH recapitulate the effect of E2, leading to increased BAT thermogenesis, weight loss, and metabolic improvement. These findings demonstrate that E2 regulation of ceramide-induced hypothalamic lipotoxicity and ER stress is an important determinant of energy balance, suggesting that dysregulation of this mechanism may underlie some changes in energy homeostasis seen in femalesThe research leading to these results has received funding from Xunta de Galicia (R.N.: 2015-CP080 and 2016-PG057; M.L.: 2015-CP079), MINECO co-funded by the FEDER Program of EU (R.N.: BFU2015-70664R; D.P.: SAF2016-77526-R; C.D.: BFU2017-87721; M.L.: SAF2015-71026-R and BFU2015-70454-REDT/Adipoplast). The CiMUS is supported by the Xunta de Galicia (2016-2019, ED431G/05). L.L.-P. is a recipient of a fellowship from Xunta de Galicia (ED481A-2016/094); E.R.-P. is a recipient of a fellowship from MINECO (BES-2015-072743); A.E.-S. is a recipient of a fellowship from MINECO (FPI/BES-2016-077439); C.R. is a recipient of a fellowship from MINECO (FPU16/04582). CIBER Fisiopatología de la Obesidad y Nutrición is an initiative of ISCIIIS

    Thyroid-Hormone-Induced Browning of White Adipose Tissue Does Not Contribute to Thermogenesis and Glucose Consumption.

    Get PDF
    Regulation of body temperature critically depends on thyroid hormone (TH). Recent studies revealed that TH induces browning of white adipose tissue, possibly contributing to the observed hyperthermia in hyperthyroid patients and potentially providing metabolic benefits. Here, we show that browning by TH requires TH-receptor β and occurs independently of the sympathetic nervous system. The beige fat, however, lacks sufficient adrenergic stimulation and is not metabolically activated despite high levels of uncoupling protein 1 (UCP1). Studies at different environmental temperatures reveal that TH instead causes hyperthermia by actions in skeletal muscle combined with a central body temperature set-point elevation. Consequently, the metabolic and thermogenic effects of systemic hyperthyroidism were maintained in UCP1 knockout mice, demonstrating that neither beige nor brown fat contributes to the TH-induced hyperthermia and elevated glucose consumption, and underlining that the mere presence of UCP1 is insufficient to draw conclusions on the therapeutic potential of browning agents

    Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance

    Get PDF
    Thyroid hormones (THs) act in the brain to modulate energy balance. We show that central triiodothyronine (T3) regulates de novo lipogenesis in liver and lipid oxidation in brown adipose tissue (BAT) through the parasympathetic (PSNS) and sympathetic nervous system (SNS), respectively. Central T3 promotes hepatic lipogenesis with parallel stimulation of the thermogenic program in BAT. The action of T3 depends on AMP-activated protein kinase (AMPK)-induced regulation of two signaling pathways in the ventromedial nucleus of the hypothalamus (VMH): decreased ceramide-induced endoplasmic reticulum(ER) stress, which promotes BAT thermogenesis, and increased c-Jun N-terminal kinase (JNK) activation, which controls hepatic lipid metabolism. Of note, ablation of AMPK alpha 1 in steroidogenic factor 1 (SF1) neurons of the VMH fully recapitulated the effect of central T3, pointing to this population in mediating the effect of central THs on metabolism. Overall, these findings uncover the underlying pathways through which central T3 modulates peripheral metabolism.Peer reviewe

    Neuronal Blockade of Thyroid Hormone Signaling Increases Sensitivity to Diet-Induced Obesity in Adult Male Mice

    No full text
    International audienceThyroid hormone increases energy expenditure. Its action is mediated by TR, nuclear receptors present in peripheral tissues and in the central nervous system, particularly in hypothalamic neurons. Here, we address the importance of thyroid hormone signaling in neurons, in general for the regulation of energy expenditure. We generated mice devoid of functional TR in neurons using the Cre/LoxP system. In hypothalamus, which is the center for metabolic regulation, mutations were present in 20% to 42% of the neurons. Phenotyping was performed under physiological conditions that trigger adaptive thermogenesis: cold and high-fat diet (HFD) feeding. Mutant mice displayed impaired thermogenic potential in brown and inguinal white adipose tissues and were more prone to diet-induced obesity. They showed a decreased energy expenditure on chow diet and gained more weight on HFD. This higher sensitivity to obesity disappeared at thermoneutrality. Concomitantly, the AMPK pathway was activated in the ventromedial hypothalamus of the mutants as compared with the controls. In agreement, sympathetic nervous system (SNS) output, visualized by tyrosine hydroxylase expression, was lower in the brown adipose tissue of the mutants. In contrast, absence of TR signaling in the mutants did not affect their ability to respond to cold exposure. This study provides the first genetic evidence that thyroid hormone signaling exerts a significant influence in neurons to stimulate energy expenditure in some physiological context of adaptive thermogenesis. TR function in neurons to limit weight gain in response to HFD and this effect is associated with a potentiation of SNS output

    Temperature modulates systemic and central actions of thyroid hormones on BAT thermogenesis

    No full text
    Thyroid hormones (THs) play a major role regulating energy balance and brown adipose tissue (BAT) thermogenesis, as well as body temperature, as shown in hyperthyroid patients. However, the current landscape of preclinical thyroid hormone models is complex. For example, while rats become catabolic after TH administration, mice gain weight; so, these differences in species need to be analyzed in detail and specially whether temperature could be a factor. Here, we aimed to investigate the effect of environmental temperature on those actions. Rats were subcutaneously treated with L-thyroxine (T4) or stereotaxically within the ventromedial nucleus of the hypothalamus (VMH) with triiodothyronine (T3) and housed at 23°C, 4°C or 30°C; energy balance, BAT thermogenesis and AMP-activated protein kinase (AMPK) in the VMH were analyzed. Our data showed that the effect of both systemic T4 of central T3 on energy balance and BAT thermogenesis was dependent upon environmental temperature. This evidence is of interest in the design of experimental settings highlighting the species-specific metabolic actions of THs, and in understanding its physiological role in the adaptation to temperature.This research was funded by: Ministerio de Ciencia y Universidades co-funded by the FEDER Program of EU (CD: BFU 2017-87721; RN: RTI 2018-099413-B-I00 and RED 2018-102379-T; ML: RTI 2018-101840-B-I00, PID2021-128145NB-I00 and PDC2022-133958-I00). “la Caixa” Foundation (ID100010434), under the agreement LCF/PR/HR19/52160022 (ML); European Research Council (RN: ERC Synergy Grant-2019-WATCH- 810331)

    Reduction of Hypothalamic Endoplasmic Reticulum Stress Activates Browning of White Fat and Ameliorates Obesity.

    No full text
    The chaperone GRP78/BiP (glucose-regulated protein 78 kDa/binding immunoglobulin protein) modulates protein folding in reply to cellular insults that lead to endoplasmic reticulum (ER) stress. This study investigated the role of hypothalamic GRP78 on energy balance, with particular interest in thermogenesis and browning of white adipose tissue (WAT). For this purpose, we used diet-induced obese rats and rats administered thapsigargin, and by combining metabolic, histologic, physiologic, pharmacologic, thermographic, and molecular techniques, we studied the effect of genetic manipulation of hypothalamic GRP78. Our data showed that rats fed a high-fat diet or that were centrally administered thapsigargin displayed hypothalamic ER stress, whereas genetic overexpression of GRP78 specifically in the ventromedial nucleus of the hypothalamus was sufficient to alleviate ER stress and to revert the obese and metabolic phenotype. Those effects were independent of feeding and leptin but were related to increased thermogenic activation of brown adipose tissue and induction of browning in WAT and could be reversed by antagonism of β3 adrenergic receptors. This evidence indicates that modulation of hypothalamic GRP78 activity may be a potential strategy against obesity and associated comorbidities

    Adipose TSHB in Humans and Serum TSH in Hypothyroid Rats Inform About Cellular Senescence

    Get PDF
    Background/Aims: Thyroid hormones have been recently linked to senescence and longevity. Given the recent description of TSHB mRNA in human adipose tissue (AT), we aimed to investigate the relationship between local AT TSH and adipose tissue senescence. Methods: TSHB mRNA (measured by real-time PCR) and markers of adipose tissue senescence [BAX, DBC1, TP53, TNF (real-time PCR), telomere length (Telo TAGGG Telomere Length Assay) and lipidomics (liquid chromatography mass spectrometry)] were analysed in subcutaneous (SAT) and visceral (VAT) AT from euthyroid subjects. The chronic effects of TSH were also investigated in AT from hypothyroid rats and after recombinant human TSH (rhTSH) administration in human adipocytes. Results: Both VAT and SAT TSHB gene expression negatively correlated with markers of AT cellular senescence (BAX, DBC1, TP53, TNF gene expression and specific glucosylceramides) and positively associated with telomere length. Supporting these observations, both rhTSH administration in human adipocytes and increased TSH in hypothyroid rats resulted in decreased markers of cellular senescence (Bax and Tp53 mRNA) in both gonadal and subcutaneous white adipose tissue. Conclusion: These data point to a possible role of TSH in AT cellular senescence

    Genetic Targeting of GRP78 in the VMH Improves Obesity Independently of Food Intake

    Get PDF
    Recent data have demonstrated that the hypothalamic GRP78/BiP (glucose regulated protein 78 kDa/binding immunoglobulin protein) modulates brown adipose tissue (BAT) thermogenesis by acting downstream on AMP-activated protein kinase (AMPK). Herein, we aimed to investigate whether genetic over-expression of GRP78 in the ventromedial nucleus of the hypothalamus (VMH: a key site regulating thermogenesis) could ameliorate very high fat diet (vHFD)-induced obesity. Our data showed that stereotaxic treatment with adenoviruses harboring GRP78 in the VMH reduced hypothalamic endoplasmic reticulum ER stress and reversed vHFD-induced obesity. Herein, we also demonstrated that this body weight decrease was more likely associated with an increased BAT thermogenesis and browning of white adipose tissue (WAT) than to anorexia. Overall, these results indicate that the modulation of GRP78 in the VMH may be a target against obesity
    corecore