77 research outputs found

    Post-tectonic landscape evolution in NE Iberia using staircase terraces: Combined effects of uplift and climate

    Get PDF
    © 2017 Elsevier B.V.River incision into bedrock resulting from the combined effects of tectonic uplift and climate governs long-term regional landscape evolution. We determined spatial and temporal patterns of post-orogenic stream incision from a sequence of well-preserved staircase terraces developed over the last 1 Ma in the Central Pyrenees and its southern foreland Ebro basin (NE Spain). Extensive remnants of ten vertically separated terraces (Qt1 to Qt10, from oldest to youngest) were mapped along 170 km of the Cinca River valley, transverse to the Pyrenean mountain belt. Multiple outcrops appear in the upper reach of the valley (Ainsa sector, 50 km from headwaters) as well as in the lower reach (Albalate sector, 125 km from headwaters). Fluvial incision into bedrock was calculated using (i) differentially corrected GPS measurements of the altitude of straths and (ii) numerical dating of alluvial sediments from the lower terraces (Qt5 to Qt9) by Optically Stimulated Luminescence, previously reported by Lewis et al. (2009), and supplemented with new dates for the upper terraces (Qt1, Qt2 and Qt3) based on paleomagnetism and supported by soil development. Considering altitude differences and the elapsed time between successive well preserved terrace couples (Qt3–Qt7, Qt7–Qt9 and Qt9-Active channel), mean bedrock incision rates ranged from 0.76 to 0.38 m ka− 1, at the upper reach of the valley (Ainsa section), and from 0.61 to 0.20 m ka− 1, at the lower reach (Albalate section). River incision along the valley produced vertically separated, near-parallel longitudinal terrace profiles evidencing a rapid near-uniform regional uplift as response to (i) the tectonic lithospheric thickening in NE Iberia and (ii) the erosional download rebound related to the Ebro basin exorheism. Moreover, a subtle upstream divergence of strath profiles may have been a consequence of an increase in uplift rate toward the head of the valley. Additionally, incision rates changed over time as indicate results from the lower reach (Albalate section); the maximum rate was 1.48 m ka− 1 between Qt7 (61 ka) and Qt8 (47 ka), and the minimum rate was 0.11 m ka− 1 between Qt3 (401 ka) and Qt5 (178 ka). The highest incision rates were produced after the Marine Isotope Stage 4 most likely in response to (i) an increased snowmelt discharge during the subsequent deglaciation related to the last maximum advance of glaciers in the southern Pyrenees, and (ii) a limited width of the valley after Qt7 formation, resulting from the deactivation of the westward river migration. Therefore, incision rates over the last 1 Ma in the Cinca River valley were basically controlled by near-uniform bedrock uplift, in the context of climate variability. The results reported in this study represent significant data on fluvial incision in NE Iberia, and provide an assessment of the regional post-tectonic landscape evolution

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    A population-scale temporal case–control evaluation of COVID-19 disease phenotype and related outcome rates in patients with cancer in England (UKCCP)

    Get PDF
    Patients with cancer are at increased risk of hospitalisation and mortality following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, the SARS-CoV-2 phenotype evolution in patients with cancer since 2020 has not previously been described. We therefore evaluated SARS-CoV-2 on a UK populationscale from 01/11/2020-31/08/2022, assessing case-outcome rates of hospital assessment(s), intensive care admission and mortality. We observed that the SARS-CoV-2 disease phenotype has become less severe in patients with cancer and the non-cancer population. Case-hospitalisation rates for patients with cancer dropped from 30.58% in early 2021 to 7.45% in 2022 while case-mortality rates decreased from 20.53% to 3.25%. However, the risk of hospitalisation and mortality remains 2.10x and 2.54x higher in patients with cancer, respectively. Overall, the SARS-CoV-2 disease phenotype is less severe in 2022 compared to 2020 but patients with cancer remain at higher risk than the non-cancer population. Patients with cancer must therefore be empowered to live more normal lives, to see loved ones and families, while also being safeguarded with expanded measures to reduce the risk of transmission

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    The Basic CCR Model

    No full text

    Rapid Assembly and Eruption of a Shallow Silicic Magma Reservoir, Reyðarártindur Pluton, Southeast Iceland

    Get PDF
    Although it is widely accepted that shallow silicic magma reservoirs exist, and can feed eruptions, their dynamics and longevity are a topic of debate. Here, we use field mapping, geochemistry, 3D pluton reconstruction and a thermal model to investigate the assembly and eruptive history of the shallow Reyðarártindur Pluton, southeast Iceland. Primarily, the exposed pluton is constructed of a single rock unit, the Main Granite (69.9–77.7 wt.% SiO2). Two further units are locally exposed as enclaves at the base of the exposure, the Granite Enclaves (67.4–70.2 wt.% SiO2), and the Quartz Monzonite Enclaves (61.8–67.3 wt.% SiO2). Geochemically, the units are related and were likely derived from the same source reservoir. In 3D, the pluton has a shape characterized by flat roof segments that are vertically offset and a volume of >2.5 km3. The pluton roof is intruded by dikes from the pluton, and in two locations displays depressions associated with large dikes. Within these particular dikes the rock is partially to wholly tuffisitic, and rock compositions range from quartz monzonite to granite. We interpret these zones as eruption-feeding conduits from the pluton. A lack of cooling contacts throughout the pluton indicates rapid magma emplacement and a thermal model calculates the top 75 m would have rheologically locked up within 1,000 years. Hence, we argue that the Reyðarártindur Pluton was an ephemeral part of the wider plumbing system that feeds a volcano, and that timeframes from emplacement to eruption were rapid
    corecore