365 research outputs found

    Dramaturgia: o texto e tudo mais ao redor

    Get PDF

    Phenotypic plasticity and water flux rates of Citrus root orders under salinity

    Get PDF
    Knowledge about the root system structure and the uptake efficiency of root orders is critical to understand the adaptive plasticity of plants towards salt stress. Thus, this study describes the phenological and physiological plasticity of Citrus volkameriana rootstocks under severe NaCl stress on the level of root orders. Phenotypic root traits known to influence uptake processes, for example frequency of root orders, specific root area, cortical thickness, and xylem traits, did not change homogeneously throughout the root system, but changes after 6 months under 90 mM NaCl stress were root order specific. Chloride accumulation significantly increased with decreasing root order, and the Cl− concentration in lower root orders exceeded those in leaves. Water flux densities of first-order roots decreased to <20% under salinity and did not recover after stress release. The water flux densities of higher root orders changed marginally under salinity and increased 2- to 6-fold in second and third root orders after short-term stress release. Changes in root order frequency, morphology, and anatomy indicate rapid and major modification of C. volkameriana root systems under salt stress. Reduced water uptake under salinity was related to changes of water flux densities among root orders and to reduced root surface areas. The importance of root orders for water uptake changed under salinity from root tips towards higher root orders. The root order-specific changes reflect differences in vulnerability (indicated by the salt accumulation) and ontogenetic status, and point to functional differences among root orders under high salinity

    A Mass Balance Approach to Identify and Compare Differential Routing of \u3csup\u3e13\u3c/sup\u3eC-Labeled Carbohydrates, Lipids, and Proteins In Vivo

    Get PDF
    All animals route assimilated nutrients to their tissues where they are used to support growth or are oxidized for energy. These nutrients are probably not allocated homogeneously among the various tissue and are more likely to be preferentially routed toward some tissues and away from others. Here we introduce an approach that allows researchers to identify and compare nutrient routing among different organs and tissues. We tested this approach by examining nutrient routing in birds. House sparrows Passer domesticus were fed a meal supplemented with one of seven 13C-labeled metabolic tracers representing three major classes of macronutrients, namely, carbohydrates, amino acids, and fatty acids. While these birds became postabsorptive (2 h after feeding), we quantified the isotopic enrichment of the lean and lipid fractions of several organs and tissues. We then compared the actual 13C enrichment of various tissue fractions with the predictions of our model to identify instances where nutrients were differentially routed and found that different classes of macronutrients are uniquely routed throughout the body. Recently ingested amino acids were preferentially routed to the lean fraction of the liver, whereas exogenous carbohydrates were routed to the brain and the lipid fraction of the liver. Fatty acids were definitively routed to the heart and the liver, although high levels of palmitic acid were also recovered in the adipose tissue. Tracers belonging to the same class of molecules were not always routed identically, illustrating how this technique is also suited to examine differences in nonoxidative fates of closely related molecules. Overall, this general approach allows researchers to test heretofore unexamined predictions about how animals allocate the nutrients they ingest

    Using the Leiden Guidelines to address key issues in digitally derived evidence

    Get PDF
    The global developments have shown one thing clearly: there is a lack of guidance and clarity when it comes to using DDE in the courtroom. Due to the fast evolution of digital technology and the (often, by design) slow evolution of courts and tribunals, the treatment of DDE within and between national and international accountability fora suffers from an absence of uniformity at best, and a lack of any useful guidance at worst.  The Leiden Guidelines on the Use of Digitally Derived Evidence in International Criminal Courts and Tribunals (“The Leiden Guidelines”) were created to address this legal lacuna by examining the various ways in which DDE has been treated in international criminal law. The Guidelines identify overarching standards of treatment, derived from the jurisprudence of international criminal courts and tribunals (“ICCTs”), that practitioners should consider when collecting and tendering DDE. Exploring the Frontiers of International La

    Mode choice and ride-pooling simulation: A comparison of mobiTopp, Fleetpy, and MATSim

    Get PDF
    On-demand ride-pooling systems have gained a lot of attraction in the past years as they promise to reduce traffic and vehicle fleets compared to private vehicles. Transport simulations show that automation of vehicles and resulting fare reductions enable large-scale ride-pooling systems to have a high potential to drastically change urban transportation. For a realistic simulation of the new transport mode it is essential to model the interplay of ride-pooling demand and supply. Hence, these simulations should incorporate (1) a mode choice model to measure demand levels and (2) a dynamic model of the on-demand ride-pooling system to measure the service level and fleet performance. We compare two different simulation frameworks that both incorporate both aspects and compare their results with an identical input. It is shown that both systems are capable of generating realistic results and assessing mode choice and ride-pooling schemes. Commonalities and differences are identified and discussed

    Soil geochemistry – and not topography – as a major driver of carbon allocation, stocks, and dynamics in forests and soils of African tropical montane ecosystems

    Get PDF
    The lack of field-based data in the tropics limits our mechanistic understanding of the drivers of net primary productivity (NPP) and allocation. Specifically, the role of local edaphic factors - such as soil parent material and topography controlling soil fertility as well as water and nutrient fluxes - remains unclear and introduces substantial uncertainty in understanding net ecosystem productivity and carbon (C) stocks. Using a combination of vegetation growth monitoring and soil geochemical properties, we found that soil fertility parameters reflecting the local parent material are the main drivers of NPP and C allocation patterns in tropical montane forests, resulting in significant differences in below- to aboveground biomass components across geochemical (soil) regions. Topography did not constrain the variability in C allocation and NPP. Soil organic C stocks showed no relation to C input in tropical forests. Instead, plant C input seemingly exceeded the maximum potential of these soils to stabilize C. We conclude that, even after many millennia of weathering and the presence of deeply developed soils, above- and belowground C allocation in tropical forests, as well as soil C stocks, vary substantially due to the geochemical properties that soils inherit from parent material

    The interplay between ozone and urban vegetation – BVOC emissions, ozone deposition, and tree ecophysiology

    Get PDF
    Tropospheric ozone (O3) is one of the most prominent air pollution problems in Europe and other countries worldwide. Human health is affected by O3 via the respiratory as well the cardiovascular systems. Even though trees are present in relatively low numbers in urban areas, they can be a dominant factor in the regulation of urban O3 concentrations. Trees affect the O3 concentration via emission of biogenic volatile organic compounds (BVOC), which can act as a precursor of O3, and by O3 deposition on leaves. The role of urban trees with regard to O3 will gain further importance as NOx concentrations continue declining and climate warming is progressing—rendering especially the urban ozone chemistry more sensitive to BVOC emissions. However, the role of urban vegetation on the local regulation of tropospheric O3 concentrations is complex and largely influenced by species-specific emission rates of BVOCs and O3 deposition rates, both highly modified by tree physiological status. In this review, we shed light on processes related to trees that affect tropospheric ozone concentrations in metropolitan areas from rural settings to urban centers, and discuss their importance under present and future conditions. After a brief overview on the mechanisms regulating O3 concentrations in urban settings, we focus on effects of tree identity and tree physiological status, as affected by multiple stressors, influencing both BVOC emission and O3 deposition rates. In addition, we highlight differences along the rural-urban gradient affecting tropospheric O3 concentrations and current knowledge gaps with the potential to improve future models on tropospheric O3 formation in metropolitan areas
    corecore