62 research outputs found
Diagenetic evolution of lower Jurassic platform carbonates flanking the Tazoult salt wall (Central High Atlas, Morocco)
Platform carbonates diagenesis in salt basins could be complex due to potential alterations of fluids related and non‐related to diapirism. This paper presents the diagenetic history of the Hettangian to Pliensbachian platform carbonates from the Tazoult salt wall area (central High Atlas, Morocco). Low structural relief and outcrop conditions allowed to define the entire diagenetic evolution occurred in the High Atlas diapiric basins since early stages of the diapiric activity up to their tectonic inversion. Precipitation of dolomite and calcite from both warmed marine‐derived and meteoric fluids characterised diagenetic stages during Pliensbachian, when the carbonate platforms were exposed and karstified. Burial diagenesis occurred from Toarcian to Middle Jurassic, due to changes of salt‐induced dynamic related to increase in siliciclastic input, fast diapir rise and rapid burial of Pliensbachian platforms. During this stage, the diapir acted as a physical barrier for fluid circulation between the core and the flanking sediments. In the carbonates and breccias flanking the structures, dolomite and calcite precipitated from basinal brines, whereas carbonate slivers located in the core of the structure, were affected by the circulation of Mn‐rich fluids. The final diagenetic event is characterised by the income of meteoric fluids into the system during uplift caused by Alpine orogeny. These results highlight the relevant influence of diapirism on the diagenetic modifications in salt‐related basins in terms of diagenetic events and involved fluids
Cell surface antigens in renal tumour cells: detection by immunoluminescence and enzymatic analysis
Two renal cell carcinoma cell lines (49RC 43STR and 75RC 2STR) were characterized by detection of the cell surface proteins: CD44(var), intercellular adhesion molecule-1 (ICAM-1), urokinase-type plasminogen activator (uPA) and its receptor and aminopeptidase N (APN). To detect their localization the immunoluminescent technique was used. In addition, the enzyme activity of uPA and APN was investigated in cell suspensions as well as in monolayers. The latter procedure was more advantageous since the additional use of HPLC permits a single registration of the fluorescent hydrolysis-product AMC (7-amino-4-methylcoumarin) without interference by cellular autofluorescence or non-reacted fluorescent substrate. Unlike 75RC 2STR, the cell line 49RC 43STR expressed high levels of uPA and APN. Contrary to that the cell line 75RC 2STR expressed high levels of ICAM-1 and CD44(v6), whereas 49RC 43STR showed a low level of ICAM-1 and no distinct light signal with anti-CD44(v6). The uPA activity was measured directly as well as indirectly (via plasmin) with the substrate Z-Gly-Gly-Arg-AMC. Both activator and plasmin activity were inhibited by D-Val-Phe-Lys-CMK and phenylmethylsulfonyl fluoride. The anti-catalytic antibody to uPA and that to uPA receptor were found to be inhibiting the uPA activity in a concentration-dependent manner. APN activity was assayed using alanine-p-nitroanilide. Peptidase activity was effectively inhibited by 1,10-phenanthroline and partly inhibited by ethylenediamine-tetraacetic acid. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: focus on the cancer hallmark of tumor angiogenesis
One of the important ‘hallmarks’ of cancer is angiogenesis, which is the process of formation of new blood vessels that are necessary for tumor expansion, invasion and metastasis. Under normal physiological conditions, angiogenesis is well balanced and controlled by endogenous proangiogenic factors and antiangiogenic factors. However, factors produced by cancer cells, cancer stem cells and other cell types in the tumor stroma can disrupt the balance so that the tumor microenvironment favors tumor angiogenesis. These factors include vascular endothelial growth factor, endothelial tissue factor and other membrane bound receptors that mediate multiple intracellular signaling pathways that contribute to tumor angiogenesis. Though environmental exposures to certain chemicals have been found to initiate and promote tumor development, the role of these exposures (particularly to low doses of multiple substances), is largely unknown in relation to tumor angiogenesis. This review summarizes the evidence of the role of environmental chemical bioactivity and exposure in tumor angiogenesis and carcinogenesis. We identify a number of ubiquitous (prototypical) chemicals with disruptive potential that may warrant further investigation given their selectivity for high-throughput screening assay targets associated with proangiogenic pathways. We also consider the cross-hallmark relationships of a number of important angiogenic pathway targets with other cancer hallmarks and we make recommendations for future research. Understanding of the role of low-dose exposure of chemicals with disruptive potential could help us refine our approach to cancer risk assessment, and may ultimately aid in preventing cancer by reducing or eliminating exposures to synergistic mixtures of chemicals with carcinogenic potential
Macrofauna Activity in Quaternary Bottom Water Environments off Western Australia: Fecal Pellets Evidence
[B-PT03] [EE] Biomineralization and the Geochemistry of Proxies -Field ecology, Laboratory culture and Paleo: Poster abstract no [BPT03-P08]Fossil macrofauna are difficult to assess quantitatively compared with micro- and meiofaunas because of their large body size and rare occurrence, particularly in small samples (e.g., sediment core). To estimate the quantitative activity of the macrobenthos, we focused on fossil fecal pellet abundance in Quaternary sediments. For this investigation, we used a sediment core obtained off Western Australia in the eastern Indian Ocean (IODP Exp. 356). We focused on horizons which clearly exhibited sedimentary cycles. The upper part of the core mainly comprised of alternating beds of dark-colored packstone/wackestone and light-colored wackestone/mudstone. Well-preserved molluscan fossils and peloids occurred in the light-colored wackestone/mudstone in the upper part of the sedimentary sequence. The morphological character and size of the peloids within the studied sediments are similar to modern fecal pellets of shallow water polychaetes. The abundance of fossil fecal pellets shows fluctuating trends similar to those of macrofossils (e.g., bivalve, gastropod, scaphopod, and echinoderm) and it is likely that the fecal pellet abundance is an indicator of paleo-macrobenthos activity. This activity was compared to ostracode abundance (Fig.) and temporal changes in fossil fecal pellet abundance were found to be inversely correlated. At other intervals, the pellets changed to superficial ooids and occurred in conjunction with Larger Benthic Foraminifera, indicating deposition within the photic zone. Thus, these intervals may indicate a shallow water environment during deposition. In this research, we reveal that the abundance of fossil fecal pellets shows macrobenthic activity, reflecting the evolutions of bottom water environments during the Quaternary period
- …