907 research outputs found

    Probing the Radio Loud/Quiet AGN dichotomy with quasar clustering

    Get PDF
    We investigate the clustering properties of 45441 radio-quiet quasars (RQQs) and 3493 radio-loud quasars (RLQs) drawn from a joint use of the Sloan Digital Sky Survey (SDSS) and Faint Images of the Radio Sky at 20 cm (FIRST) surveys in the range 0.3<z<2.30.3<z<2.3. This large spectroscopic quasar sample allow us to investigate the clustering signal dependence on radio-loudness and black hole (BH) virial mass. We find that RLQs are clustered more strongly than RQQs in all the redshift bins considered. We find a real-space correlation length of r0=6.590.24+0.33h1Mpcr_{0}=6.59_{-0.24}^{+0.33}\,h^{-1}\,\textrm{Mpc} and r0=10.951.58+1.22h1Mpcr_{0}=10.95_{-1.58}^{+1.22}\,h^{-1}\,\textrm{Mpc} {\normalsize{}for} RQQs and RLQs, respectively, for the full redshift range. This implies that RLQs are found in more massive host haloes than RQQs in our samples, with mean host halo masses of 4.9×1013h1M\sim4.9\times10^{13}\,h^{-1}\,M_{\odot} and 1.9×1012h1M\sim1.9\times10^{12}\,h^{-1}\,M_{\odot}, respectively. Comparison with clustering studies of different radio source samples indicates that this mass scale of 1×1013h1M\gtrsim1\times10^{13}\,h^{-1}\,M_{\odot} is characteristic for the bright radio-population, which corresponds to the typical mass of galaxy groups and galaxy clusters. The similarity we find in correlation lengths and host halo masses for RLQs, radio galaxies and flat-spectrum radio quasars agrees with orientation-driven unification models. Additionally, the clustering signal shows a dependence on black hole (BH) mass, with the quasars powered by the most massive BHs clustering more strongly than quasars having less massive BHs. We suggest that the current virial BH mass estimates may be a valid BH proxies for studying quasar clustering. We compare our results to a previous theoretical model that assumes that quasar activityComment: 15 pages, 13 figures, A&A in pres

    Metric of a Slow Rotating Body with Quadrupole Moment from the Erez-Rosen Metric

    Full text link
    A metric representing a slowly rotating object with quadrupole moment is obtained using a perturbation method to include rotation into the weak limit of the Erez-Rosen metric. This metric is intended to tackle relativistic astrometry and gravitational lensing problems in which a quadrupole moment has to be taken into account

    Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry

    Get PDF
    A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional search, which simultaneously explores the graph from the start and the destination. It has been observed recently that this strategy performs particularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic geometry. To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic random graphs and prove that it is {O~}(n^{2 - 1/alpha} + n^{1/(2 alpha)} + delta_{max}) with high probability, where alpha in (0.5, 1) controls the power-law exponent of the degree distribution, and delta_{max} is the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it

    PROPIEDADES DEL EFECTO LENTE PARA EL PERFIL DE EINASTO EN TÉRMINOS DE LA FUNCIÓN G DE MEIJER

    Get PDF
    In N-body simulations of cold dark matter, it has been found that three-parameter models, particularly the Einasto profile, yield better fits to a wide range of dark matter haloes than two parameter models like the Navarro-Frenk-White profile. Recently, the analytical properties of the Einasto profile has been studied, allowing closed expressions for its surface mass density and lensing properties in terms of the Fox H and Meijer G functions, using a Mellin transform formalism. These expressions are valid for all values of the Einasto index in terms of the Fox H function, and valid for integer and half-integer values of Einasto index in terms of the Meijer G function. In this paper, we derive expressions for lensing properties of the Einasto profile for all rational values of the Einasto index in terms of the Meijer G function. Equivalency between these expressions and other recent results is also discussed  En simulaciones de N-cuerpos de materia oscura fría, se ha encontrado que modelos de tres parámetros, particularmente el perfil de Einasto, ofrece mejores ajustes para un amplio rango de halos de materia oscura que los modelos de dos parámetros como el perfil Navarro-Frenk-White. Recientemente, las propiedades analíticas del perfil de Einasto han sido estudiadas, lográdose expresiones cerradas para su densidad de masa superficial y propiedades de lente gravitational en términos de la función H de Fox, usando el formalismo de la transformada de Mellin. Estas expresiones son válidas para todos los valores del índice de Einasto en términos de la función H de Fox, y válidos para valores enteros y semi-enteros del índice de Einasto en términos de la función G de Meijer. En este artículo, se determinan expresiones para las propiedades de lente gravitational del perfil de Einasto para todos los valores racionales del índice de Einasto en términos de la función G de Meijer. La equivalencia entre estas expre- siones y otros resultados recientes también es discutida

    Deep LOFAR 150 MHz imaging of the Bo\"otes field: Unveiling the faint low-frequency sky

    Get PDF
    We have conducted a deep survey (with a central rms of 55μJy55\mu\textrm{Jy}) with the LOw Frequency ARray (LOFAR) at 120-168 MHz of the Bo\"otes field, with an angular resolution of 3.98×6.453.98^{''}\times6.45^{''}, and obtained a sample of 10091 radio sources (5σ5\sigma limit) over an area of 20deg220\:\textrm{deg}^{2}. The astrometry and flux scale accuracy of our source catalog is investigated. The resolution bias, incompleteness and other systematic effects that could affect our source counts are discussed and accounted for. The derived 150 MHz source counts present a flattening below sub-mJy flux densities, that is in agreement with previous results from high- and low- frequency surveys. This flattening has been argued to be due to an increasing contribution of star-forming galaxies and faint active galactic nuclei. Additionally, we use our observations to evaluate the contribution of cosmic variance to the scatter in source counts measurements. The latter is achieved by dividing our Bo\"otes mosaic into 10 non-overlapping circular sectors, each one with an approximate area of 2deg2.2\:\textrm{deg}^{2}. The counts in each sector are computed in the same way as done for the entire mosaic. By comparing the induced scatter with that of counts obtained from depth observations scaled to 150MHz, we find that the 1σ1\sigma scatter due to cosmic variance is larger than the Poissonian errors of the source counts, and it may explain the dispersion from previously reported depth source counts at flux densities S<1mJyS<1\,\textrm{mJy}. This work demonstrates the feasibility of achieving deep radio imaging at low-frequencies with LOFAR.Comment: A\&A in press. 15 pages, 16 figure

    Efficient Shortest Paths in Scale-Free Networks with Underlying Hyperbolic Geometry

    Get PDF
    A common way to accelerate shortest path algorithms on graphs is the use of a bidirectional search, which simultaneously explores the graph from the start and the destination. It has been observed recently that this strategy performs particularly well on scale-free real-world networks. Such networks typically have a heterogeneous degree distribution (e.g., a power-law distribution) and high clustering (i.e., vertices with a common neighbor are likely to be connected themselves). These two properties can be obtained by assuming an underlying hyperbolic geometry. To explain the observed behavior of the bidirectional search, we analyze its running time on hyperbolic random graphs and prove that it is O~(n21/α+n1/(2α)+δmax)\mathcal {\tilde O}(n^{2 - 1/\alpha} + n^{1/(2\alpha)} + \delta_{\max}) with high probability, where α(0.5,1)\alpha \in (0.5, 1) controls the power-law exponent of the degree distribution, and δmax\delta_{\max} is the maximum degree. This bound is sublinear, improving the obvious worst-case linear bound. Although our analysis depends on the underlying geometry, the algorithm itself is oblivious to it

    Extreme conditions in the molecular gas of lensed star-forming galaxies at z~3

    Get PDF
    Atomic Carbon can be an efficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the power sources in the molecular gas of high redshift galaxies. The recently installed SEPIA5 receiver at the focus of the APEX telescope has opened up a new window at frequencies 159 - 211 GHz allowing the exploration of the Atomic Carbon in high-z galaxies, at previously inaccessible frequencies from the ground. We have targeted three gravitationally lensed galaxies at redshift of about 3 and conducted a comparative study of the observed high-J CO/CI ~ratios with well-studied nearby galaxies. Atomic Carbon (CI(2-1)) was detected in one of the three targets and marginally in a second, while in all three targets the J=76J=7\to6 CO line is detected. The CO(7-6)/CI(2-1), CO(7-6)/CO(1-0) line ratios and the CO(7-6)/(far-IR continuum) luminosity ratio are compared to those of nearby objects. A large excitation status in the ISM of these high-z objects is seen, unless differential lensing unevenly boosts the CO line fluxes from the warm and dense gas more than the CO(1-0), CI(2-1), tracing a more widely distributed cold gas phase. We provide estimates of total molecular gas masses derived from the atomic Carbon and the Carbon monoxide CO(1-0), which within the uncertainties turn out to be equal.Comment: A&A, in pres

    Analytical shear and flexion of Einasto dark matter haloes

    Get PDF
    N-body simulations predict that dark matter haloes are described by specific density profiles on both galactic- and cluster-sized scales. Weak gravitational lensing through the measurements of their first and second order properties, shear and flexion, is a powerful observational tool for investigating the true shape of these profiles. One of the three-parameter density profiles recently favoured in the description of dark matter haloes is the Einasto profile. We present exact expressions for the shear and the first and second flexions of Einasto dark matter haloes derived using a Mellin-transform formalism in terms of the Fox H and Meijer G functions, that are valid for general values of the Einasto index. The resulting expressions can be written as series expansions that permit us to investigate the asymptotic behaviour of these quantities. Moreover, we compare the shear and flexion of the Einasto profile with those of different mass profiles including the singular isothermal sphere, the Navarro-Frenk-White profile, and the S\'ersic profile. We investigate the concentration and index dependences of the Einasto profile, finding that the shear and second flexion could be used to determine the halo concentration, whilst for the Einasto index the shear and first and second flexions may be employed. We also provide simplified expressions for the weak lensing properties and other lensing quantities in terms of the generalized hypergeometric function.Comment: 14 pages, 3 figures. Accepted for publication in Astronomy and Astrophysic
    corecore