5 research outputs found

    Stress increases putative gonadotropin inhibitory hormone and decreases luteinizing hormone in male rats

    No full text
    The subjective experience of stress leads to reproductive dysfunction in many species, including rodents and humans. Stress effects on reproduction result from multilevel interactions between the hormonal stress response system, i.e., the hypothalamic–pituitary–adrenal (HPA) axis, and the hormonal reproductive system, i.e., the hypothalamic–pituitary–gonadal (HPG) axis. A novel negative regulator of the HPG axis known as gonadotropin-inhibitory hormone (GnIH) was recently discovered in quail, and orthologous neuropeptides known as RFamide-related peptides (RFRPs) have also been identified in rodents and primates. It is currently unknown, however, whether GnIH/RFRPs influence HPG axis activity in response to stress. We show here that both acute and chronic immobilization stress lead to an up-regulation of RFRP expression in the dorsomedial hypothalamus (DMH) of adult male rats and that this increase in RFRP is associated with inhibition of downstream HPG activity. We also show that adrenalectomy blocks the stress-induced increase in RFRP expression. Immunohistochemistry revealed that 53% of RFRP cells express receptors for glucocorticoids (GCs), indicating that adrenal GCs can mediate the stress effect through direct action on RFRP cells. It is thought that stress effects on central control of reproduction are largely mediated by direct or indirect effects on GnRH-secreting neurons. Our data show that stress-induced increases in adrenal GCs cause an increase in RFRP that contributes to hypothalamic suppression of reproductive function. This novel insight into HPA-HPG interaction provides a paradigm shift for work on stress-related reproductive dysfunction and infertility, and indicates that future work on stress and reproductive system interactions must include investigation of the role of GnIH/RFRP

    Mouse alarm pheromone shares structural similarity with predator scents.

    No full text
    Sensing the chemical warnings present in the environment is essential for species survival. In mammals, this form of danger communication occurs via the release of natural predator scents that can involuntarily warn the prey or by the production of alarm pheromones by the stressed prey alerting its conspecifics. Although we previously identified the olfactory Grueneberg ganglion as the sensory organ through which mammalian alarm pheromones signal a threatening situation, the chemical nature of these cues remains elusive. We here identify, through chemical analysis in combination with a series of physiological and behavioral tests, the chemical structure of a mouse alarm pheromone. To successfully recognize the volatile cues that signal danger, we based our selection on their activation of the mouse olfactory Grueneberg ganglion and the concomitant display of innate fear reactions. Interestingly, we found that the chemical structure of the identified mouse alarm pheromone has similar features as the sulfur-containing volatiles that are released by predating carnivores. Our findings thus not only reveal a chemical Leitmotiv that underlies signaling of fear, but also point to a double role for the olfactory Grueneberg ganglion in intraspecies as well as interspecies communication of danger

    Depression induces bone loss through stimulation of the sympathetic nervous system

    No full text
    Major depression is associated with low bone mass and increased incidence of osteoporotic fractures. However, causality between depression and bone loss has not been established. Here, we show that mice subjected to chronic mild stress (CMS), an established model of depression in rodents, display behavioral depression accompanied by impaired bone mass and structure, as portrayed by decreases in trabecular bone volume density, trabecular number, and trabecular connectivity density assessed in the distal femoral metaphysis and L3 vertebral body. Bone remodeling analysis revealed that the CMS-induced skeletal deficiency is accompanied by restrained bone formation resulting from reduced osteoblast number. Antidepressant therapy, which prevents the behavioral responses to CMS, completely inhibits the decrease in bone formation and markedly attenuates the CMS-induced bone loss. The depression-triggered bone loss is associated with a substantial increase in bone norepinephrine levels and can be blocked by the β-adrenergic antagonist propranolol, suggesting that the sympathetic nervous system mediates the skeletal effects of stress-induced depression. These results define a linkage among depression, excessive adrenergic activity, and reduced bone formation, thus demonstrating an interaction among behavioral responses, the brain, and the skeleton, which leads to impaired bone structure. Together with the common occurrence of depression and bone loss in the aging population, the present data implicate depression as a potential major risk factor for osteoporosis and the associated increase in fracture incidence
    corecore