3,082 research outputs found
Negative-energy perturbations in cylindrical equilibria with a radial electric field
The impact of an equilibrium radial electric field on negative-energy
perturbations (NEPs) (which are potentially dangerous because they can lead to
either linear or nonlinear explosive instabilities) in cylindrical equilibria
of magnetically confined plasmas is investigated within the framework of
Maxwell-drift kinetic theory. It turns out that for wave vectors with a
non-vanishing component parallel to the magnetic field the conditions for the
existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D.
Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for
the existence of perpendicular NEPs, which are found to be the most important
perturbations, is modified. For ( is the
electrostatic potential) and ( is
the total plasma pressure), a case which is of operational interest in magnetic
confinement systems, the existence of perpendicular NEPs depends on ,
where is the charge of the particle species . In this case the
electric field can reduce the NEPs activity in the edge region of tokamaklike
and stellaratorlike equilibria with identical parabolic pressure profiles, the
reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late
Negative-Energy Perturbations in Circularly Cylindrical Equilibria within the Framework of Maxwell-Drift Kinetic Theory
The conditions for the existence of negative-energy perturbations (which
could be nonlinearly unstable and cause anomalous transport) are investigated
in the framework of linearized collisionless Maxwell-drift kinetic theory for
the case of equilibria of magnetically confined, circularly cylindrical plasmas
and vanishing initial field perturbations. For wave vectors with a
non-vanishing component parallel to the magnetic field, the plane equilibrium
conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290
(1994)]) are shown to remain valid, while the condition for perpendicular
perturbations (which are found to be the most important modes) is modified.
Consequently, besides the tokamak equilibrium regime in which the existence of
negative-energy perturbations is related to the threshold value of 2/3 of the
quantity , a new
regime appears, not present in plane equilibria, in which negative-energy
perturbations exist for {\em any} value of . For various analytic
cold-ion tokamak equilibria a substantial fraction of thermal electrons are
associated with negative-energy perturbations (active particles). In
particular, for linearly stable equilibria of a paramagnetic plasma with flat
electron temperature profile (), the entire velocity space is
occupied by active electrons. The part of the velocity space occupied by active
particles increases from the center to the plasma edge and is larger in a
paramagnetic plasma than in a diamagnetic plasma with the same pressure
profile. It is also shown that, unlike in plane equilibria, negative-energy
perturbations exist in force-free reversed-field pinch equilibria with a
substantial fraction of active particles.Comment: 31 pages, late
Neutralino Phenomenology at LEP2 in Supersymmetry with Bilinear Breaking of R-parity
We discuss the phenomenology of the lightest neutralino in models where an
effective bilinear term in the superpotential parametrizes the explicit
breaking of R-parity. We consider supergravity scenarios where the lightest
supersymmetric particle (LSP) is the lightest neutralino and which can be
explored at LEP2. We present a detailed study of the LSP decay properties and
general features of the corresponding signals expected at LEP2. We also
contrast our model with gauge mediated supersymmetry breaking.Comment: 21 pages, Latex, uses axodraw.sty (included), 13 figures included as
ps- and eps-files, figures slightly changed after bug-fixing, comparison with
GMSB and a few references added, version to appear in NP
Finding the Higgs Boson through Supersymmetry
The study of displaced vertices containing two b--jets may provide a double
discovery at the Large Hadron Collider (LHC): we show how it may not only
reveal evidence for supersymmetry, but also provide a way to uncover the Higgs
boson necessary in the formulation of the electroweak theory in a large region
of the parameter space. We quantify this explicitly using the simplest minimal
supergravity model with bilinear breaking of R-parity, which accounts for the
observed pattern of neutrino masses and mixings seen in neutrino oscillation
experiments.Comment: 7 pages, 7 figures. Final version to appear at PRD. Discussion and
results were enlarge
Symmetrical Observability of Kinematic Parameters in Symmetrical Parallel Mechanisms
This article presents an application of symmetry group theory in kinematic identification of parallel mechanisms of nlegs legs -- Kinematic Identification implies the estimation of the actual geometrical parameters (as opposed to nominal ones) of a physical mechanism -- For a symmetric mechanism, KI requires configuring sets of leg positions with symmetrical observability – This article presents as main contributions: (i) a conjecture that allows mapping the symmetries of the mechanism into the active-joint workspace, (ii) a set of necessary conditions to express leg parameters in coordinate systems which allow symmetrical observability, and (iii) a procedure for exploiting symmetries in pose selection for kinematic identification of symmetrical parallel mechanisms -- For the kinematic identification itself, we adopt a divide-and-conquer (DC) identification protocol -discussed by us in another publication- in which each leg of the mechanism is independently identified by using the inverse calibration method -- In this article we emphasize how to exploit the symmetries existent in (nlegs − 1) legs of the parallel mechanism allowing to apply to other legs the symmetry-transformed sample protocol used for the kinematic identification of a reference leg -- The symmetrical observability of sets of leg parameters allows to reduce the costs of the pose selection procedure by a factor of (1/nlegs) compared to a complete DC procedure in which the poses of each leg are selected independently -- The pose selection is carried out only for the reference leg -- For the (nlegs−1) remaining legs the poses are dictated by symmetry operations performed onto the poses of the reference leg -- An application of the symmetrical observability is presented through the simulated kinematic identification of a 3RRR symmetrical parallel mechanismPolytechnic School of the University of São PauloSitio webIndicaciones, Associação Brasileira de Métodos Computacionais em Engenharia, International Association for Computational Mechanics, International Congress and Convention Association, Conheça o São Paulo é Tudo de Bom, Embratur, PETROBRA
Bound-state dark matter with Majorana neutrinos
We propose a simple scenario in which dark matter (DM) emerges as a stable
neutral hadronic thermal relics, its stability following from an exact
symmetry. Neutrinos pick up radiatively induced
Majorana masses from the exchange of colored DM constituents. There is a common
origin for both dark matter and neutrino mass, with a lower bound for
neutrinoless double beta decay. Direct DM searches at nuclear recoil
experiments will test the proposal, which may also lead to other
phenomenological signals at future hadron collider and lepton flavour violation
experiments.Comment: 9 pages, 4 figures. arXiv admin note: text overlap with
arXiv:1803.0852
On the connection of Gamma-rays, Dark Matter and Higgs searches at LHC
Motivated by the upcoming Higgs analyzes we investigate the importance of the
complementarity of the Higgs boson chase on the low mass WIMP search in direct
detection experiments and the gamma-ray emission from the Galactic Center
measured by the Fermi-LAT telescope in the context of the . We obtain the relic abundance, thermal cross section,
the WIMP-nucleon cross section in the low mass regime and network them with the
branching ratios of the Higgs boson in the model. We conclude that the Higgs
boson search has a profound connection to the dark matter problem in our model,
in particular for the case that ( GeV) the BR(
WIMPs) . This scenario could explain this plateau of any mild
excess regarding the Higgs search as well as explain the gamma-ray emission
from the galactic center through the channel with a WIMP in the mass
range of 25-45 GeV, while still being consistent with the current limits from
XENON100 and CDMSII. However, if the recent modest excesses measured at LHC and
TEVATRON are confirmed and consistent with a standard model Higgs boson this
would imply that GeV, consequently ruling out any attempt to
explain the Fermi-LAT observations.Comment: 8 pages, 9 figure
Probing neutrino mass with multilepton production at the Tevatron in the simplest R-parity violation model
We analyze the production of multileptons in the simplest supergravity model
with bilinear violation of R parity at the Fermilab Tevatron. Despite the small
R-parity violating couplings needed to generate the neutrino masses indicated
by current atmospheric neutrino data, the lightest supersymmetric particle is
unstable and can decay inside the detector. This leads to a phenomenology quite
distinct from that of the R-parity conserving scenario. We quantify by how much
the supersymmetric multilepton signals differ from the R-parity conserving
expectations, displaying our results in the plane. We
show that the presence of bilinear R-parity violating interactions enhances the
supersymmetric multilepton signals over most of the parameter space, specially
at moderate and large .Comment: 26 pages, 23 figures. Revised version with some results corrected and
references added. Conclusions remain the sam
- …
