The conditions for the existence of negative-energy perturbations (which
could be nonlinearly unstable and cause anomalous transport) are investigated
in the framework of linearized collisionless Maxwell-drift kinetic theory for
the case of equilibria of magnetically confined, circularly cylindrical plasmas
and vanishing initial field perturbations. For wave vectors with a
non-vanishing component parallel to the magnetic field, the plane equilibrium
conditions (derived by Throumoulopoulos and Pfirsch [Phys Rev. E {\bf 49}, 3290
(1994)]) are shown to remain valid, while the condition for perpendicular
perturbations (which are found to be the most important modes) is modified.
Consequently, besides the tokamak equilibrium regime in which the existence of
negative-energy perturbations is related to the threshold value of 2/3 of the
quantity ην=∂lnNν∂lnTν, a new
regime appears, not present in plane equilibria, in which negative-energy
perturbations exist for {\em any} value of ην. For various analytic
cold-ion tokamak equilibria a substantial fraction of thermal electrons are
associated with negative-energy perturbations (active particles). In
particular, for linearly stable equilibria of a paramagnetic plasma with flat
electron temperature profile (ηe=0), the entire velocity space is
occupied by active electrons. The part of the velocity space occupied by active
particles increases from the center to the plasma edge and is larger in a
paramagnetic plasma than in a diamagnetic plasma with the same pressure
profile. It is also shown that, unlike in plane equilibria, negative-energy
perturbations exist in force-free reversed-field pinch equilibria with a
substantial fraction of active particles.Comment: 31 pages, late