26 research outputs found

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    Detection of T lymphocytes in intestine of broiler chicks treated with Lactobacillus spp. and challenged with Salmonella enterica serovar enteritidis

    No full text
    The expression of immune response in the form of leukocytic infiltrate by CD3+, CD4+, and CD8+ cells in the epithelium and in the intestinal lamina propria of chicks was studied in the present work by means of immunohistochemical reaction. The chicks were treated with Lactobacillus spp. or cecal microflora (CM) and experimentally challenged or not with Salmonella enterica serovar Enteritidis. The 320 birds utilized were divided into 4 groups containing 80 chicks each and submitted to treatments with Lactobacillus reuteri, Lactobacillus salivarius, Lactobacillus acidophilus, and CM. Each group was subdivided into 4 subgroups of 20 birds each and classified into a subgroup that did not receive treatment (negative control), subgroup treated, subgroup treated and challenged with Salmonella Enteritidis, and subgroup only challenged with Salmonella Enteritidis (positive control). The results obtained show that the treatment with L. reuteri, L. salivarius, L. acidophilus, or CM and challenged or not with Salmonella Enteritidis determine immune response in the form of leukocytic infiltrate by CD3+ and CD8+ lymphocytes followed by CD4+ in the epithelium and in the lamina propria of the duodenum, jejunum, and cecum of chicks up to 12 d of age. The quantity of CD3+ lymphocytes was significantly higher (P < 0.05) in the intestine of chicks treated with L. acidophilus or CM and challenged or not with Salmonella Enteritidis; however, the higher quantity of CD8+ lymphocytes was in the intestine of chicks treated with CM and challenged with Salmonella Enteritidis. The duodenum was the segment in which the immune response by T cells (CD3+, CD4+, and CD8+) was stimulated with the greatest intensity, followed by, respectively, the jejunum and cecum. The quantity of CD3+ lymphocytes present in the duodenum, jejunum, and cecum increases with the age of chicks, independent of the stimulus determined by treatments or challenge

    PICO: Probe of Inflation and Cosmic Origins

    No full text
    The Probe of Inflation and Cosmic Origins (PICO) is a proposed probe-scale space mission consisting of an imaging polarimeter operating in frequency bands between 20 and 800 GHz. We describe the science achievable by PICO, which has sensitivity equivalent to more than 3300 Planck missions, the technical implementation, the schedule and cost
    corecore