104 research outputs found

    Correction:The dentate gyrus in depression: directions for future research (Molecular Psychiatry, (2021), 26, 6, (1720-1722), 10.1038/s41380-020-0678-8)

    Get PDF
    This article was originally published under Nature Research’s License to Publish, but has now been made available under a [CC BY 4.0] license. The PDF and HTML versions of the article have been modified accordingly

    Lower fractional anisotropy without evidence for neuro-inflammation in patients with early-phase schizophrenia spectrum disorders

    Get PDF
    Various lines of research suggest immune dysregulation as a potential therapeutic target for negative and cognitive symptoms in schizophrenia spectrum disorders (SSD). Immune dysregulation would lead to higher extracellular free-water (EFW) in cerebral white matter (WM), which may partially underlie the frequently reported lower fractional anisotropy (FA) in SSD. We aim to investigate differences in EFW concentrations – a presumed proxy for neuro-inflammation – between early-phase SSD patients (n = 55) and healthy controls (HC; n = 37), and to explore immunological and cognitive correlates. To increase specificity for EFW, we study several complementary magnetic resonance imaging contrasts that are sensitive to EFW. FA, mean diffusivity (MD), magnetization transfer ratio (MTR), myelin water fraction (MWF) and quantitative T1 and T2 were calculated from diffusion-weighted imaging (DWI), magnetization transfer imaging (MTI) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT). For each measure, WM skeletons were constructed with tract-based spatial statistics. Multivariate SSD-HC comparisons with WM skeletons and their average values (i.e. global WM) were not statistically significant. In voxel-wise analyses, FA was significantly lower in SSD in the genu of the corpus callosum and in the left superior longitudinal fasciculus (p < 0.04). Global WM measures did not correlate with immunological markers (i.e. IL1-RA, IL-6, IL-8, IL-10 and CRP) or cognition in HC and SSD after corrections for multiple comparisons. We confirmed lower FA in early-phase SSD patients. However, non–FA measures did not provide additional evidence for immune dysregulation or for higher EFW as the primary mechanism underlying the reported lower FA values in SSD

    Changes in perfusion, and structure of hippocampal subfields related to cognitive impairment after ECT:A pilot study using ultra high field MRI

    Get PDF
    Background: Electroconvulsive therapy (ECT) in patients with major depression is associated with volume changes and markers of neuroplasticity in the hippocampus, in particular in the dentate gyrus. It is unclear if these changes are associated with cognitive side effects. Objectives: We investigated whether changes in cognitive functioning after ECT were associated with hippocampal structural changes. It was hypothesized that 1) volume increase of hippocampal subfields and 2) changes in perfusion and diffusion of the hippocampus correlated with cognitive decline. Methods: Using ultra high field (7 T) MRI, intravoxel incoherent motion and volumetric data were acquired and neurocognitive functioning was assessed before and after ECT in 23 patients with major depression. Repeated measures correlation analysis was used to examine the relation between cognitive functioning and structural characteristics of the hippocampus. Results: Left hippocampal volume, left and right dentate gyrus and right CA1 volume increase correlated with decreases in verbal memory functioning. In addition, a decrease of mean diffusivity in the left hippocampus correlated with a decrease in letter fluency. Limitations: Due to methodological restrictions direct study of neuroplasticity is not possible. MRI is used as an indirect measure. Conclusion: As both volume increase in the hippocampus and MD decrease can be interpreted as indirect markers for neuroplasticity that co-occur with a decrease in cognitive functioning, our results may indicate that neuroplastic processes are affecting cognitive processes after ECT.</p

    Motor Network Degeneration in Amyotrophic Lateral Sclerosis: A Structural and Functional Connectivity Study

    Get PDF
    BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by motor neuron degeneration. How this disease affects the central motor network is largely unknown. Here, we combined for the first time structural and functional imaging measures on the motor network in patients with ALS and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS: Structural measures included whole brain cortical thickness and diffusion tensor imaging (DTI) of crucial motor tracts. These structural measures were combined with functional connectivity analysis of the motor network based on resting state fMRI. Focal cortical thinning was observed in the primary motor area in patients with ALS compared to controls and was found to correlate with disease progression. DTI revealed reduced FA values in the corpus callosum and in the rostral part of the corticospinal tract. Overall functional organisation of the motor network was unchanged in patients with ALS compared to healthy controls, however the level of functional connectedness was significantly correlated with disease progression rate. Patients with increased connectedness appear to have a more progressive disease course. CONCLUSIONS/SIGNIFICANCE: We demonstrate structural motor network deterioration in ALS with preserved functional connectivity measures. The positive correlation between functional connectedness of the motor network and disease progression rate could suggest spread of disease along functional connections of the motor network

    Modular-Level Functional Connectome Alterations in Individuals With Hallucinations Across the Psychosis Continuum

    Get PDF
    Functional connectome alterations, including modular network organization, have been related to the experience of hallucinations. It remains to be determined whether individuals with hallucinations across the psychosis continuum exhibit similar alterations in modular brain network organization. This study assessed functional connectivity matrices of 465 individuals with and without hallucinations, including patients with schizophrenia and bipolar disorder, nonclinical individuals with hallucinations, and healthy controls. Modular brain network organization was examined at different scales of network resolution, including (1) global modularity measured as Qmax and Normalised Mutual Information (NMI) scores, and (2) within- and between-module connectivity. Global modular organization was not significantly altered across groups. However, alterations in within- and between-module connectivity were observed for higher-order cognitive (e.g., central-executive salience, memory, default mode), and sensory modules in patients with schizophrenia and nonclinical individuals with hallucinations relative to controls. Dissimilar patterns of altered within- and between-module connectivity were found bipolar disorder patients with hallucinations relative to controls, including the visual, default mode, and memory network, while connectivity patterns between visual, salience, and cognitive control modules were unaltered. Bipolar disorder patients without hallucinations did not show significant alterations relative to controls. This study provides evidence for alterations in the modular organization of the functional connectome in individuals prone to hallucinations, with schizophrenia patients and nonclinical individuals showing similar alterations in sensory and higher-order cognitive modules. Other higher-order cognitive modules were found to relate to hallucinations in bipolar disorder patients, suggesting differential neural mechanisms may underlie hallucinations across the psychosis continuum.publishedVersio

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices.</p

    Author Correction:Functional connectome differences in individuals with hallucinations across the psychosis continuum (Scientific Reports, (2021), 11, 1, (1108), 10.1038/s41598-020-80657-8)

    Get PDF
    The Supplementary Information published with this Article contained an error, where an old version of Figure S5 was used. This error has now been corrected in the Supplementary Information file that accompanies the original Article. The corrected Supplementary Information file is also linked to this correction notices

    Multi-site genetic analysis of diffusion images and voxelwise heritability analysis : a pilot project of the ENIGMA–DTI working group

    Get PDF
    The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/)

    Widespread higher fractional anisotropy associates to better cognitive functions in individuals at ultra-high risk for psychosis

    Get PDF
    In schizophrenia patients, cognitive functions appear linked to widespread alterations in cerebral white matter microstructure. Here we examine patterns of associations between regional white matter and cognitive functions in individuals at ultra-high risk for psychosis. One hundred and sixteen individuals at ultra-high risk for psychosis and 49 matched healthy controls underwent 3 T magnetic resonance diffusion-weighted imaging and cognitive assessments. Group differences on fractional anisotropy were tested using tract-based spatial statistics. Group differences in cognitive functions, voxel-wise as well as regional fractional anisotropy were tested using univariate general linear modeling. Multivariate partial least squares correlation analyses tested for associations between patterns of regional fractional anisotropy and cognitive functions. Univariate analyses revealed significant impairments on cognitive functions and lower fractional anisotropy in superior longitudinal fasciculus and cingulate gyrus in individuals at ultra-high risk for psychosis. Partial least squares correlation analysis revealed different associations between patterns of regional fractional anisotropy and cognitive functions in individuals at ultra-high risk for psychosis compared to healthy controls. Widespread higher fractional anisotropy was associated with better cognitive functioning for individuals at ultra-high risk for psychosis, but not for the healthy controls. Furthermore, patterns of cognitive functions were associated with an interaction-effect on regional fractional anisotropy in fornix, medial lemniscus, uncinate fasciculus, and superior cerebellar peduncle. Aberrant associations between patterns of cognitive functions to white matter may be explained by dysmyelination
    corecore