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Abstract

In schizophrenia patients, cognitive functions appear linked to widespread alterations

in cerebral white matter microstructure. Here we examine patterns of associations

between regional white matter and cognitive functions in individuals at ultra-high risk

for psychosis. One hundred and sixteen individuals at ultra-high risk for psychosis and

49 matched healthy controls underwent 3 T magnetic resonance diffusion-weighted

imaging and cognitive assessments. Group differences on fractional anisotropy were

tested using tract-based spatial statistics. Group differences in cognitive functions,

voxel-wise as well as regional fractional anisotropy were tested using univariate general

linear modeling. Multivariate partial least squares correlation analyses tested for associ-

ations between patterns of regional fractional anisotropy and cognitive functions. Uni-

variate analyses revealed significant impairments on cognitive functions and lower

fractional anisotropy in superior longitudinal fasciculus and cingulate gyrus in individ-

uals at ultra-high risk for psychosis. Partial least squares correlation analysis revealed

different associations between patterns of regional fractional anisotropy and cognitive

functions in individuals at ultra-high risk for psychosis compared to healthy controls.

Widespread higher fractional anisotropy was associated with better cognitive function-

ing for individuals at ultra-high risk for psychosis, but not for the healthy controls.
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Furthermore, patterns of cognitive functions were associated with an interaction-effect

on regional fractional anisotropy in fornix, medial lemniscus, uncinate fasciculus, and

superior cerebellar peduncle. Aberrant associations between patterns of cognitive func-

tions to white matter may be explained by dysmyelination.

K E YWORD S

cognition, diffusion tensor imaging, partial least squares correlation analysis, ultra-high risk for

psychosis, white matter

1 | INTRODUCTION

The ultra-high risk (UHR) criteria (Yung, Yuen, Phillips, Francey, &

McGorry, 2003) are commonly used to identify individuals at height-

ened risk for developing a psychosis. Research on UHR-individuals is

critical for early intervention, considering the detrimental individual

and societal effects of psychosis (Bora, Yucel, & Pantelis, 2009;

Pantelis et al., 2005). Regardless of transition to psychosis, UHR-

individuals are characterized by persistent impairments in cognition

and functioning (Nelson et al., 2010; Simon et al., 2013).

UHR-individuals display impairments across multiple cognitive

domains (Bora & Murray, 2014; Glenthøj et al., 2018), with an overall

small to medium effect size compared to healthy controls (HCs; Fusar-Poli

et al., 2012). Importantly, cognitive deficits are predictive of functional

outcome (Niendam, Jalbrzikowski, & Bearden, 2009), and impairments in

executive functions, such as verbal memory, fluency, and working mem-

ory may be predictive of transition to psychosis (Kim et al., 2011).

White matter (WM) consists of fiber bundles of neuronal axons

running in parallel, providing efficient information transfer between

cortical regions (Peer, Nitzan, Bick, Levin, & Arzy, 2017). Conse-

quently, impairments of WM may lead to a disturbed communica-

tion between regions, which may impair cognitive functioning

(Borghesani et al., 2013). Since higher-order cognitive functions

require communication between distributed brain-regions

(Bressler & Menon, 2010; Filley & Fields, 2016), linking WM and

cognition may provide valuable information on the functional impli-

cations of altered WM-microstructure affecting the course of illness

(Friston, 2011).

WM-abnormalities have been observed in a broad spectrum of

psychiatric disorders, including UHR-individuals (Bora et al., 2011;

Fields, 2008; Jenkins et al., 2016). Associations between WM and

cognition have been established through neuroimaging studies in

diverse populations (Kochunov et al., 2017; Magioncalda, Martino,

Ely, Inglese, & Stern, 2016; Schaeffer et al., 2015). However, these

studies are characterized by modest sample-sizes and the results are

equivocal. Here we examine, if there is a differential pattern of associ-

ations between WM-microstructure and cognitive functions in UHR-

individuals compared to HC.

Diffusion-weighted imaging (DWI) is a noninvasive magnetic res-

onance imaging (MRI) technique and is the method of choice to

study various aspects of WM-microstructure in vivo (Concha, 2014).

With DWI, we can measure the size and shape of the diffusion pro-

file of water molecules in brain tissue. In WM, the water molecules

diffuse more easily along the WM-fiber bundles and tend to be

more hindered in the perpendicular directions (Johansen-Berg &

Behrens, 2009). Currently, the most widely applied DWI-derived

measure is fractional anisotropy (FA; Beaulieu, 2002; Le Bihan &

Iima, 2015). FA serves as a sensitive, but nonspecific (Alexander,

Lee, Lazar, & Field, 2007) index of WM-organization. The interpreta-

tion of underlying biological processes is aided by applying other

DWI-derived indices, such as axial diffusivity (AD), radial diffusivity

(RD), and mean diffusivity (MD). Specific combinations of these indi-

ces have been linked to respectively dysmyelination, axonal damage,

and inflammation (Alexander et al., 2007, 2011; Table S5). However,

one should be cautious with the interpretation, since these indices

may be influenced by multiple factors such as image-noise and

crossing fibers.

Partial least square correlation (PLS-C) is a multivariate analysis

method (Krishnan, Williams, McIntosh, & Abdi, 2011), offering advan-

tageous features in the modeling of complex associations, for exam-

ple, interactions and correlations between multiple

neuropsychological and neuroimaging indices (Sarstedt, Hair, Ringle,

Thiele, & Gudergan, 2016). Thus, PLS-C provides a mean for investi-

gating the functional implications of altered WM-microstructure.

Moreover, the effect-sizes of the WM-alterations in UHR-individuals

are expected to be small, and therefore univariate statistical analysis is

vulnerable to Type-2 errors, when a correction for multiple compari-

sons is applied. When applying PLS-C, we benefit from the larger sen-

sitivity to obtain additional and complementary information on the

complex relations between the expected subtle cerebral changes and

widespread cognitive impairments in UHR-individuals. Recently, we

applied a similar PLS-C approach in independent studies of UHR-

individuals (Krakauer et al., 2017) and first-episode psychotic patients

[Jessen et al., 2018].

In the current study, we expected impairments in various cognitive

functions, and widespread subtle WM-alterations characterized by

lower FA in UHR compared to HC.

2 | METHODS

The study was conducted in accordance with the declaration of

Helsinki. The study protocol was approved by the Committee on Health
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Research Ethics of the Capital Region Denmark (H-6-2013-015), and the

Danish Data Protection Agency (2007-58-0015, I-Suite no. 02670). All

participants provided informed oral and written consent prior to

inclusion.

2.1 | Participants

Participants were recruited as part of a randomized clinical trial exam-

ining the effect of cognitive remediation in UHR-individuals at the

Mental Health Centre Copenhagen, Denmark (the FOCUS-trial;

Glenthøj et al., 2015). A total of 116 patients were recruited from the

adult psychiatric in- and outpatient facilities in the catchment area of

Copenhagen, between April 2014 and December 2017. We have pre-

viously presented cognitive data on subsamples of UHR-individuals

compared to HC (Glenthøj, Fagerlund, et al., 2016; Glenthøj, Jepsen,

et al., 2016; Glenthøj et al., 2018). The current study includes baseline

data on MR-DWI and cognition. UHR-individuals were help-seeking,

aged 18–40 years, and fulfilled one or more of the UHR-criteria as

assessed by the Comprehensive Assessment of At Risk Mental State

(CAARMS; Yung et al., 2005): attenuated psychotic symptoms, brief

limited psychotic episodes, or state-and-trait vulnerability (a first-

degree relative with psychotic disorder, or a diagnose of schizotypal

personality disorder). Exclusion criteria were: psychiatric symptoms

only co-occurring with acute intoxication, organic brain disease, a

diagnosis of a developmental disorder, current treatment with methyl-

phenidate, or MRI scans with overt pathology as evaluated by a

trained neuroradiologist. HC were concurrently included and matched

1:2 to the UHR-individuals on age, gender, ethnicity, and parental

socioeconomic status (SES). HC were recruited through internet and

community-based advertising, and had no current or previous psychi-

atric diagnoses, substance abuse or dependency, and no first-degree

relative with a psychotic disorder.

2.2 | Assessments

2.2.1 | Clinical measures

The CAARMS interview and The Structured Clinical Interview for

DSM-IV Axis I Disorders (SCID-I) and part of the Structured Clinical

Interview for DSM-IV Axis II Disorders (SCID-II; First & Gibbon, 2004;

Spitzer, Williams, Gibbon, & First, 1990) were used to diagnostically

assess all participants. Trained assessors were experienced psycholo-

gists and medical doctors.

2.2.2 | Cognitive measures

Premorbid IQ was estimated using the Danish adaptation of the

National Adult Reading Test (DART; Bright, Jaldow, & Kopelman, 2002).

The third version of the Danish Weschler Adult Intelligence Scale

(WAIS-III; Wechsler, 1997) provided estimates of: (a) current verbal IQ

using the Similarities subtest, and (b) current performance IQ using the

Block Design subtest. Cognitive functions were assessed using selected

tests from the Brief Assessment of Cognition in Schizophrenia battery

(Keefe et al., 2008): list-Learning, digit sequencing, fluency, and symbol

coding; as well as tests from the Cambridge Neuropsychological Test

Automated Battery (CANTAB; Sahakian & Owen, 1992): spatial working

memory (SWM), stockings of Cambridge (SOC), intraextradimensional

set shifting test (IED), paired associate learning (PAL), reaction time

index (RTI), and rapid visual information processing (RVP). For a detailed

overview on cognitive domains and tests, see Table S1.

2.2.3 | Image acquisition and processing

MRI scans were acquired on a 3 T scanner (Philips Healthcare, Best,

the Netherlands). Diffusion-weighted images (DWIs) were acquired

using single shot spin-echo echoplanar imaging (EPI) sequence with

30 noncollinear diffusion-weighted (b = 1,000 s/mm2). Two DWI

scans were acquired, and the latter was acquired in an opposite phase

encoding direction, enabling correction for susceptibility distortions

(Andersson, Skare, & Ashburner, 2003; for details on image acquisition

and processing, see Text S1).

Tools from the FSL software library v5.0.10 (Jenkinson, Beckmann,

Behrens, Woolrich, & Smith, 2012) and MRtrix3 (www.mrtrix.org) were

used for image processing. Motion parameters were extracted to cor-

rect for head motion. FA maps were calculated and tract-based spatial

statistics (TBSS; Smith et al., 2006) was used to create skeleton maps

using a threshold of 0.2. For exploratory analyses, skeleton maps were

similarly created for AD, RD, and MD. Using the JHU DTI-based WM

atlas labels (Mori & Zijl, 2007), we extracted the mean FA, AD, RD, and

MD values in 48 WM label regions of interest (ROIs) from skeletonized

data (Figure S1). MRI quality metrics were assessed by visual inspection

and calculated from each subject using a quality assessment method

described in Roalf et al. (2016) (Table S2).

2.3 | Statistical analysis

Demographic and clinical data were analyzed with univariate tests

using IBM SPSS Statistics for Windows, Version 25.0, Armonk, NY.

To test potential group differences in cognitive functions and WM,

we first applied univariate GLM-analyses on cognitive data comparing

UHR-individuals to HC. Next, to obtain a more complete picture, we

also examined WM alterations using two complimentary univariate

methods: a standard whole brain voxel-wise analysis and ROI-analysis

of the skeletonized FA data. Finally, as our main analysis we applied

multivariate PLS-C to explore associations between patterns of cogni-

tive functions and regional FA for UHR-individuals compared to HC.

2.4 | Univariate analyses

2.4.1 | Demographic and clinical data

Distribution of continuous data was tested for normality, and group

differences were tested using GLM co-varied for age and gender.

Group differences in ordinal data regarding tobacco smoking, alcohol,

and drug use were tested using the Mann–Whitney U test or Fisher's

exact test. Nominal data were tested using Pearson's χ2 test.
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2.4.2 | Cognitive data

Distribution of data from 16 cognitive tests was tested for normality,

and in case of inhomogeneity or nonnormality, the cognitive data

were transformed (Templeton & Templeton, 2011). Outliers were

identified using the interquartile range (IQR)-method (Sokal & Rohlf,

1994). We tested group differences using GLM and co-varied for age

and gender. Effect size was calculated with Hedges' d. Results were

corrected for multiple comparisons using Bonferroni correction (Jean

Dunn, 1961), with significance threshold set at p = .003 (0.05/16).

2.4.3 | Magnetic resonance imaging data

Whole brain voxel-wise group differences were analyzed on the skele-

tonized FA data using randomize (version 2.1) with 5,000 permuta-

tions (Winkler, Ridgway, Webster, Smith, & Nichols, 2014), co-varied

for age, gender, parental SES, tobacco smoking, alcohol consumption,

and relative and absolute movement in scanner. Family-wise error

correction (Bullmore et al., 1999) with a threshold of p < .05 was used

to correct for multiple comparisons, and threshold-free cluster

enhancement (Smith & Nichols, 2009) was applied. The anatomical

locations of significant clusters were identified in MNI space using the

JHU WM tractography atlas (Mori & Zijl, 2007; Figure S1). Group dif-

ferences on 48 regional FA were tested using GLM and co-varied for

age, gender, parental SES, tobacco smoking, alcohol consumption, and

relative and absolute head motion in scanner. Results was corrected

for multiple comparisons using Bonferroni correction (Jean Dunn,

1961) with significance threshold set at p = .001 (0.05/48).

2.5 | Multivariate PLS-C analyses

The main PLS-C analysis (Abdi & Williams, 2013; McIntosh & Lob-

augh, 2004) was performed using the MATLAB software (version

2017b). We included 16 cognitive functions and mean FA values of

48 WM-regions, co-varied for age, gender, parental SES, tobacco

smoking, alcohol consumption, and relative and absolute movement in

scanner. We used the two group PLS-C analysis (Jessen et al., 2018)

to analyze associations between regional WM and cognitive function.

In short, here PLS-C is used to identify latent variables (LVs), which

express maximum covariance between: (a) patterns of regional FA

associated with group-specific cognitive functions and conversely

(b) patterns of cognitive functions associated with group-specific

regional FA (see detailed illustration in Figure 1). Both the significance

level of the omnibus test (Reisfeld & Mayeno, 2013) and of the indi-

vidual LVs were assessed using permutation testing (100.000 permu-

tations) to obtain a p-value based on nonrotated sampling distribution

of singular values (Kovacevic, Abdi, Beaton, & McIntosh, 2013). For

the omnibus test, the Inertia index that was calculated as the sum of

all singular values of all the LVs identified by PLS-C, was used for per-

mutations testing (Abdi & Williams, 2013). LVs with a p-value below

.05 were considered significant. Only LVs with a cross-block covari-

ance larger than 5 % were reported (Grigg & Grady, 2010). The reli-

ability of saliences was assessed using bootstrapping (100.000

bootstraps with procrustean rotation) to obtain 95% confidence inter-

vals. Confidence intervals of the saliences that did not cross zero were

considered reliable (Krishnan et al., 2011).

2.6 | Exploratory analyses

To determine whether potential group differences on the cognitive

functions could be regarded as an effect of between-group difference

in intelligence, we tested group differences on cognitive functions

with additional covariation for premorbid IQ.

As sensitivity analysis, we examined the potential effect of medi-

cation (Ebdrup, Raghava, Nielsen, Rostrup, & Glenthøj, 2015), sub-

stance abuse and dependency on group differences on regional FA by

performing three exploratory univariate GLM-analyses. Firstly, we

compared HC with antipsychotic-naïve UHR-individuals. Secondly, we

compared HC with psychotropic-medication-naïve UHR-individuals

(no lifetime exposure to antipsychotics, antidepressants, mood-stabi-

lizers, or benzodiazepines), and finally we compared HC with

psychotropic-medication-naïve combined with substance abuse and

dependency-naïve UHR-individuals. Furthermore, UHR-individuals

with substance abuse- and dependency were examined regarding

outlier-values on mean global FA.

For regions demonstrating interaction-effect on FA, we performed

exploratory analyses of covariance (ANCOVA) by correlating cognition

scores with FA, AD, RD, and MD. Cognition scores were calculated

using cognition saliences from the specific LVs (Krishnan et al., 2011).

3 | RESULTS

3.1 | Univariate analyses

3.1.1 | Demographic and clinical characteristics

Demographic and clinical data are presented in Table 1. The UHR-

individuals and HC did not differ significantly in age, gender, parental

SES, ethnicity, body-mass index, handedness, or recreational use of

cannabis. HC had a significantly larger recreational alcohol consump-

tion, and UHR-individuals had more tobacco use.

3.1.2 | Cognition

Cognitive data are presented in Table 2. UHR-individuals performed

significantly lower than HC on 14 out of 16 measures. Reaction time,

visual learning and memory, and planning latency did not differ

between groups. With Bonferroni correction, between-group effect

remained significant on 9 out of 16 measures, covering verbal learn-

ing, verbal fluency and working memory, processing speed, spatial

working memory, planning abilities, latency in cognitive flexibility, and

sustained attention. Exploratory analyses covarying for premorbid IQ

on the cognitive functions further removed significant between-group

effects on one subtest from CANTAB (spatial working memory).
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3.1.3 | Whole brain voxel-wise WM

The voxel-based GLM-analyses on TBSS data revealed significant

(p < .05, corrected), but focal WM-abnormalities (lower FA) in UHR-

individuals compared to HC (Figure 2). The size of the cluster was

30 voxels, and the center of the mass was located at coordinates (21.5;

−40.5; 40.9), predominantly linked to the right superior longitudinal fas-

ciculus (SLF), expanding into cingulate gyrus white matter (CG).

3.1.4 | Regions of interest WM

Univariate GLM-analysis revealed significant between-group differ-

ences in 4 out of 48 ROIs. UHR-individuals had significantly lower FA

compared to HC in the right anterior corona radiata, right fornix (cres)

stria terminalis, right SLF, and left tapetum (Table S3). The posthoc ana-

lyses for group differences on the ROIs remained significant in three

out of four ROIs (right anterior corona radiata, right fornix (cres) stria

F IGURE 1 Legend on next page
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F IGURE 1 PLS-C for between-group analysis. We included 16 cognitive functions and mean FA values of 48 WM-regions. First, a correlation
matrix (R) was computed between cognitive functions and FA data (Figure 1a. These correlation matrixes were calculated for each group (UHR
and HC) and stacked horizontal and vertically (Figure 1b). When stacked horizontally, we examined between-group differences in patterns of
cognitive functions, associated with a shared pattern of regional FA (“primary analysis”). Reversely when stacked vertically, we examined
between-group differences in patterns of regional FA, associated with a shared pattern of cognitive functions (“secondary analysis”). In next step,

the correlation matrixes were decomposed using singular value decomposition (SVD) to obtain latent variables (LVs). LVs express the maximum
covariance between patterns of cognitive functions and group-specific regional FA. All LVs combined completely describe the covariance matrix
(100%). However, in our study we were interested in LVs, that captured the part of the covariance matrix describing the differences between
UHR-individuals and healthy controls. If this difference is evident enough, then the LV is significant (UHR-individuals show a different association
between cognitive functions and regional FA compared to healthy controls). The contribution of each of the cognitive functions and ROIs to the
latent variable can be determined by projecting a significant LV back to the original variables. These projections are known as saliences. We used
the two-group PLS-C analysis (see Jessen et al. (2018)) in an extended version to analyze the interaction-effects in the first step of the analysis.
Detailed explanation of the extra shuffling across groups during the permutations testing for interaction is illustrated in Figure S2. The second
step of analysis, involving unpaired shuffling in the permutations testing, can be performed to test correlation-effects. Abbreviations: COG,
cognitive outcomes; FA, fractional anisotropy; FSL, FMRIB Software Library; HCs, Healthy controls; JHU, John Hopkins University; R, cross-block
correlation matrix; ROI, region of interest; SV, singular value; SVD, singular value decomposition; UHR, ultra-high risk of psychosis; X, matrix of
ROI FA values; Y, matrix of cognitive outcomes [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Demographic and clinical characteristics

Variable
UHR-individuals (N = 116) Healthy controls (N = 49)

p-valuePercent/mean (SD) Percent/mean (SD)

Age mean (SD) 23.8 (4.2) 24.4 (3.4) .37

Gender (percent) .87

Male/female 47.4/52.6 44.9/55.1

Parental SES (percent) .35

Low 10.3 4.1

Medium 37.1 34.7

High 52.6 61.2

Ethnicity (percent) .35

High-income countries 91.0 95.9

Low-income countries 9.0 4.1

BMI mean (SD) 23.4 (4.7) 23.3 (3.2) .87

Handedness (percent) .50

Right 86.2 87.8

Left 13.8 12.2

Function

SOFAS mean (SD) 55.1 (11.0) 89.0 (4.9) <.01

Alcohol consumption (last year) (percent) .02

Daily 1.8 4.1

Weekly 30.6 44.9

Monthly 38.7 46.9

Once/twice 15.3 4.1

Never 13.5 0.0

Tobacco smoking (last year) (percent) <.01

Daily 42.9 2.0

Weekly 5.4 8.2

Monthly 4.5 6.1

Once/twice 4.5 2.0

Never 42.9 81.6

Cannabis smoking (last year) (percent) .47

Daily 2.8 0.0

(Continues)
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terminalis, and right SLF), when comparing antipsychotic-naïve UHR-

individuals with HC, but not when comparing psychotropic-medication-

naïve UHR-individuals or combined psychotropic-medication, and sub-

stance abuse and dependency-naïve UHR-individuals with HC

(Table S4). Effect-sizes were medium, and significance levels did not

survive Bonferroni correction (significance threshold set at p = .001).

3.2 | Multivariate partial least squares correlation

The main between-group PLS-C interaction analysis revealed only

trend-level significant interaction in the associations between patterns

of regional FA and cognitive functions in UHR-individuals compared

to HC (omnibus test p = .078). However, next step PLS-C correlation

analysis identified differential associations between a pattern of

regional FA and cognitive functions in UHR-individuals compared to

HC (omnibus test p = .0085). Two significant latent variables

(LV) were identified: LV1 explained 42% (p = .048) and LV6 explained

5% of the covariance (p = .0026). Since LV1 explained more than 5%

of the covariance, only LV1 is further analyzed here.

LV1 comprised a pattern of higher FA in 47 out of 48 ROIs. This

pattern of widespread higher FA was positively associated with a pat-

tern of better cognitive performance in 7 out of 16 subtests for UHR-

individuals (verbal IQ and fluency, processing speed, strategies in spa-

tial working memory, cognitive flexibility, visual learning and memory,

and sustained attention). For HC, the pattern of widespread higher FA

was associated with better performance on one subtest (spatial work-

ing memory) and worse performance on two subtests (verbal learning,

memory, and sustained attention) (Figure 3).

To validate the primary result, we next performed a within-group

PLS-C analysis. In the UHR-group, PLS-C correlation analysis

TABLE 1 (Continued)

Variable
UHR-individuals (N = 116) Healthy controls (N = 49)

p-valuePercent/mean (SD) Percent/mean (SD)

Weekly 4.6 4.3

Monthly 6.4 4.3

Once/twice 15.6 26.1

Never 70.6 65.2

Medication (percent)

Antipsychotic-naive 57.8 100.0

All medication naive 26.7 100.0

Current antipsychotic 32.8 0.0

Current antidepressant 27.6 0.0

Current mood-stabilizers 5.2 0.0

Current benzodiazepines 7.8 0.0

Diagnose of lifetime abuse 7.8 0.0

Diagnose of currenta abuse 0.9 0.0

Diagnose of lifetime dependency 9.5 0.0

Diagnose of currenta dependency 0.9 0.0 -

Medication naive and no substance abuse or dependency 24.1 100.0

CAARMS subgroups (percent)

APS 98.2 0.0

BLIPS 2.6 0.0

TS vulnerability 23.7 0.0

Diagnoses (percent)

Affective disorder 54.3 0.0

Anxiety disorder 46.6 0.0

Personality disorder 34.5 0.0

Other diagnoses 18.1 0.0

≥3 diagnoses 40.0 0.0

Note: Table 1 shows the demographic and clinical characteristics for UHR and HC.

Abbreviations: APS, attenuated psychotic symptoms; BLIPS, brief limited intermittent psychotic symptoms; BMI, body-mass index; CAARMS,

comprehensive assessment of at-risk mental state; SD, standard deviation; SES, socioeconomic status; SOFAS, social and occupational function

assessment scale; TS, trait and state; UHR, ultra-high risk.
aCurrent = the last month.
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identified differential associations between a pattern of regional FA

and cognitive functions (omnibus test p = .0043). One significant

latent variable (LV1) explained 60% of the covariance (p = .0012),

revealing a similar association between widespread higher regional FA

and better cognitive functions as described in the between-group test

(see Figure S3). When testing HC, PLS-C analysis could not identify

TABLE 2 Cognitive functions

UHR-individuals (N = 116) Healthy controls (N = 49) Significance
Mean (SD) Mean (SD) Effect size

Cognitive measure [95% CI] [95% CI] (Hedges' g)

DART 21.72 (7.13) 24.49 (7.51) p = .04

[7.46–35.98] [9.47–39.51] g = 0.38

WAIS

• Verbal IQ 24.03 (4.86) 25.76 (3.62) p = .04

(Similarities) [14.31–33.75] [18.52–33.00] g = 0.38

• Performance IQ 53.67 (10.38) 58.29 (8.95) p = .01b

(Block design) [32.91–74.43] [49.34–76.19] g = 0.46

BACS

• List-learning 50.97 (8.44) 59.84 (5.63) p < .01b

[34.09–67.85] [48.58–71.10] g = 1.15

• Digit sequencing 20.86 (3.83) 23.16 (2.97) p < .01b

[13.20–28.52] [17.22–29.10] g = 0.64

• Fluency 58.08 (13.79) 69.94 (11.99) p < .01b

[30.50–85.66] [45.96–93.92] g = 0.89

• Symbol coding 58.20 (11.49) 69.41 (13.60) p < .01b

[35.22–81.18] [42.21–96.61] g = 0.92

CANTAB

• SWM strategya 27.07 (6.02) 25.08 (5.19) p = .05

[15.03–39.11] [14.70–35.46] g = 0.34

• SWM total errorsa 10.87 (10.87) 7.10 (8.65) p = .03b

[−10.87–32.61] [−10.2–24.40] g = 0.37

• SOC problems solved in minimum moves 9.91 (1.76) 10.76 (1.38) p < .01b

[6.39–13.43] [8.00–13.52] g = 0.51

• SOC mean initial thinking time five moves 9999.40 (5958.93) 11416.91 (7717.29) p = .22

[−1919.46–21917.26] [−3717.67–26851.49] g = 0.22

• IED total errors adj.a 19.53 (17.10) 14.39 (14.33) p = .05

[−14.67–53.73] [−14.27–43.05] g = 0.32

• IED total latencya 150885.41 (42395.65) 133134.39 (36869.15) p = .01b

[66094.11–235676.71] [59396.09–206872.69] g = 0.44

• PAL total trials adj.a 10.28 (2.83) 9.53 (1.58) p = .07

[4.62–15.94] [6.37–12.69] g = 0.30

• RTI mean simple reaction timea 303.24 (54.85) 292.57 (32.00) p = .20

[193.54–412.94] [228.57–356.57] g = 0.22

• RVP A' 0.8967 (0.0545) 0.9396 (0.0450) p < .01b

[0.7877–1.0057] [0.8496–1.0296] g = 0.83

Note: Table 2 shows the results on cognitive functions for UHR-individuals and HCs.

Abbreviations: Adj., adjusted; BACS, brief assessment of cognition in schizophrenia; CANTAB, Cambridge neuropsychological test automated battery; CI,

confidence interval; DART, Danish adult reading list; GLM, general linear modeling; IED, intra-extra dimensional shift; IQ, intelligence quotient; PAL, paired

associated learning; RTI, reaction time index; RVP, rapid visual processing; SD, standard deviation; SOC, stockings of Cambridge; SWM, spatial visual

memory; UHR, ultra-high risk; WAIS, Wechsler's adult intelligence scale.
aA lower score is better. These scores were reversed for the PLS-C analysis.
bBetween-group effect remained significant after Bonferroni correction.
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any associations between patterns of regional FA and cognitive func-

tions (omnibus test p = .26) and no significant LVs. Furthermore, the

posthoc test of the contribution of general intelligence did not change

the result of the primary analysis (see Text S3 for details).

The secondary between-group PLS-C interaction analysis rev-

ealed significant correlations between a pattern of cognitive func-

tions and different patterns of regional FA in UHR-individuals

compared to HC (omnibus test p = .038). Two significant latent vari-

ables (LVs) were identified: LV5 (p = .002) explained 7% of the

covariance, and LV6 (p = .011) explained 5% of the covariance

(Figure 4). Results from the nonsignificant latent variables LV1-LV4

are presented in Table S7.

LV5 comprised a pattern of cognitive functions characterized by

higher scores on verbal IQ, verbal fluency, planning, and poorer func-

tion on verbal working memory and more latency in cognitive flexibil-

ity. This pattern of cognitive functions was associated with a localized

interaction-effects on FA for UHR-individuals versus HC in fornix and

medial lemniscus bilaterally. Thus, the pattern of cognitive function

was associated with lower FA in the fornix for UHR-individuals,

and with higher FA for HC. Conversely, this pattern of cognitive

function was associated with higher FA in medial lemniscus for UHR-

individuals and lower FA for HC (Figure 4).

LV6 comprised a pattern of cognitive functions characterized by

higher scores on verbal IQ, verbal fluency, cognitive flexibility including

latency, and with poorer function on performance IQ, spatial working

memory, planning, reaction time and sustained attention. This pattern

of cognitive functions was associated with localized interaction-effects

on FA for UHR-individuals versus HC in the left uncinate fasciculus and

left superior cerebellar peduncle. Thus, the pattern of cognitive func-

tion was associated with higher FA in left uncinate fasciculus for UHR-

individuals, and lower FA for HC. Conversely, the pattern of cognitive

function was associated with lower FA in left superior cerebellar

peduncle for UHR-individuals, and higher FA for HC (Figure 4).

3.3 | Exploratory analyses on additional WM-indices

The exploratory between-group ANCOVA revealed highly significant

interaction-effects for all WM-indices (FA, AD, RD, and MD) in the

fornix. For the left medial lemniscus and left uncinate fasciculus the

analyses revealed highly significant interaction-effects for FA and RD,

while there was only an interaction-effect found for FA for the supe-

rior cerebellar peduncle (Table 3).

4 | DISCUSSION

In this cross-sectional study, the univariate GLM-analyses revealed

expected impairments on multiple cognitive functions in UHR-

individuals compared to HC. The results of the voxel-based analyses

also aligned with previous reports on subtle WM-alterations in UHR-

individuals (Krakauer et al., 2018). The small cluster we identified, was

not localized exclusively in one WM-region, but comprised right

SLF and right cingulate gyrus (CG). The localization of the FA-

abnormalities is in line with previous studies identifying altered WM-

microstructure in UHR-individuals (Clemm Von Hohenberg et al.,

2014; Krakauer et al., 2017) and patients with schizophrenia (Hatton

et al., 2014) and affective disorders (Dong et al., 2017). Our ROI-

analysis confirmed the finding of lower FA in SLF in UHR-individuals

compared to HC. Interestingly, the integrity of SLF has been associ-

ated with language functions (Hua et al., 2009). One functional MRI

study in UHR-individuals has demonstrated dysconnectivity in areas

thought to be involved in language comprehension, strongly con-

nected via the SLF (Jung et al., 2012). This corresponds to our results

on cognitive functions, displaying particularly large effect-sizes in the

between-group test of verbal functions (learning, memory, and flu-

ency). We speculate, that these impairments in verbal functions may

be related to the reduced FA in SLF in UHR-individuals.

F IGURE 2 Voxel-based between-group difference on FA. The results from the univariate TBSS GLM-analyses, revealing significant lower FA
in UHR-individuals compared to HC in the right superior longitudinal fasciculus and right cingulate gyrus. The cluster is enhanced for visualization
using TBSS_fill and highlighted in red-yellow colors and projected on the mean study-specific FA-skeleton template (green color). Abbreviations:
FA, fractional anisotropy; GLM, general linear modeling; HCs, healthy controls; TBSS, tract-based spatial statistics; UHR, ultra-high risk of
psychosis; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]
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Using multivariate PLS-C, we identified differential associations

between a pattern of regional FA and cognitive functions comparing

UHR-individuals to HC. The result indicates widespread higher FA to

be strongly linked to better performance on a range of cognitive func-

tions for UHR-individuals, but not for HCs. The cognitive performance

of UHR-individuals appears in contrast to HC more dependent on

WM-characteristics, and the comprehensive reductions in cognitive

functions combined with the subtle WM-changes identified in the

univariate testing, suggest the cognitive functions in individuals at

UHR to be more susceptible to variations in WM compared to

HC. We speculate, if the result may reflect a difference in the ability

to adjust and compensate for local FA-alterations. This would corre-

spond to the notion of cognitive reserve (Stern, 2009), which is a con-

cept that has been proposed to describe differences in vulnerability

and resilience to for example, structural brain alterations (such as due

to pathology, aging or environmental stimuli [Barnett, Salmond,

Jones, & Sahakian, 2006]), in part reflecting the capacity and effi-

ciency of brain-processing. Aspects of cognitive reserve are thought

to involve adaptive and compensatory functions, and cognitive

reserve is related to the overlapping concept of brain reserve (Satz,

F IGURE 3 Primary PLS-C analysis. The results from the primary PLS-C analysis, illustrating LV1. Left column displays the White matter FA-
saliences of the 48 ROIs in purple bars. Bars colored gray does not contribute reliably to the positive correlation between white matter FA and
cognitive functions. Confidence intervals are marked with light-blue lines in each bar. Below, the regions with significant interaction-effect is
projected on a standard brain derived from JHUWM-atlas. In the right column, the saliences of the 16 cognitive functions associated with the
pattern of regional WM FA are displayed and stacked for each group separately, highlighted in red for UHR-individuals and in blue for
HC. Confidence intervals that does not cross zero indicates cognitive functions which contributes reliably to the pattern. If a bar turns upward
from zero, the cognitive function is positively correlated to the pattern of white matter saliences, and is negative correlated if turning downward.
Cognitive test where a lower score is better were reversed for the PLS-C analysis. For identifying the labels of the 48 ROIs displayed by numbers
(1–48), see Text S2. Abbreviations: FA, fractional anisotropy; HCs, healthy controls; JHU, John Hopkins University; LV, latent variable; ROI, region
of interest; UHR, ultra-high risk of psychosis; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]
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Cole, Hardy, & Rassovsky, 2011), and may involve flexible-hub sys-

tems (Schmidt et al., 2015), dynamic network theory (Medaglia, Pas-

qualetti, Hamilton, Thompson-Schill, & Bassett, 2017), and

connectivity (Friston, 1994). Reduced cognitive reserve may help

explain the discrepant link between the subtle WM-alterations and

the widespread impact on cognitive functions, as the ability to acti-

vate compensatory mechanisms and strategies to the structural alter-

ations could be diminished. As structural neuroplasticity has been

suggested to respond to training-mediated activation (Kristensen

et al., 2018), the implications regarding psychological interventions

targeting compensatory cognitive training may be promising, poten-

tially contributing to an increase in cognitive reserve.

The identification of aberrant associations between patterns of

white-matter organization and cognitive function was strengthened

by the second PLS-C interaction analysis, as we further identified two

latent variables, displaying cognitive functions associated with differ-

ent patterns of regional FA, showing group interaction-effects in for-

nix, medial lemniscus, left superior cerebellar peduncle, and left

uncinate fasciculus. The result suggests, that the underlying WM

organization associated to the patterns of cognitive functions are dif-

ferent in UHR-individuals compared to HC, and that specific regions

drive this difference. We note that across the uni- and multivariate

tests, specific cognitive functions appear more susceptible. The uni-

variate test revealed the largest effect-sizes on reduced cognitive

function for UHR-individuals in verbal memory, learning and -fluency,

as well as processing speed and sustained attention. In the multivari-

ate testing, these cognitive functions were all contributing reliably to

the patterns of covariation between WM and cognition. Thus, these

cognitive functions appear specifically affected in UHR-individuals,

and concurrently associated to structural WM alterations.

WM-alterations in fornix have been demonstrated in studies of

patients with schizophrenia (Knöchel, Schmied, & Oertel-Knöchel,

2016; Thomas, Koumellis, & Dineen, 2011). As a main hippocampal

output pathway, the involvement of fornix in especially memory func-

tions is well supported (Hodgetts et al., 2017; Kehoe et al., 2015).

However, due to its proximity to the ventricular system the fornix is

particularly susceptible to cerebrospinal fluid-induced volume effects

on WM FA (Kaufmann et al., 2017), and the results should be inter-

preted with caution. The medial lemniscus is a main pathway of neural

fibers from the cerebellum and is considered a cerebello-thalamo-

cortical connection (CTC; Kamali, Kramer, Butler, & Hasan, 2009). Left

superior cerebellar peduncle is also considered a thalamo-cortical

F IGURE 4 Secondary PLS-C interaction analysis. The results from the secondary PLS-C analysis, illustrating LV5 and LV6. Left column displays
the saliences of the 16 cognitive functions in purple bars. Cognitive test where a lower score is better were reversed for the PLS-C analysis.
Confidence intervals are marked with light-blue lines in each bar. Confidence intervals that do not cross zero contribute reliably to the pattern. If
a bar turns upward from zero, the cognitive function is positively correlated to the pattern of white matter saliences, and is negative correlated if
turning downward. Below, the regions with significant interaction-effect are projected on a standard brain derived from JHU WM-atlas. In the
left column, FA-saliences of the 48 ROIs are displayed in gray bars and stacked for each group separately. Regions with interaction-effect are
highlighted in red for UHR-individuals and in blue for HC. For identifying the labels of the 48 ROIs displayed by numbers (1–48), see Text S2.
Abbreviations: FA, fractional anisotropy; HCs, healthy controls; JHU, John Hopkins University; LV, latent variable; ROI, region of interest; UHR,
ultra-high risk of psychosis; WM, white matter [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 ANCOVA on white
matter-indices

FA AD RD MD

LV5

Fornix p-value <.01a <.01a <.01a <.01a

F-value 12.77 18.06 14.62 6.27

Right medial lemniscus p-value .01a .61 .02a .19

F-value 6.29 0.25 5.73 1.69

Left medial lemniscus p-value <.01a .58 <.01a .13

F-value 7.84 0.31 7.31 2.37

LV6

Left uncinate fasciculus p-value <.01a .14 .01a .39

F-value 8.00 2.18 6.56 0.73

Left superior cerebellar peduncle p-value <.05a .51 .10 .37

F-value 4.04 0.45 2.66 0.81

Note: Table 3 shows the results from the exploratory interaction test on additional white matter-indices.

The regions tested had demonstrated interaction-effect in the PLS-C, and next we performed analyses of

covariance (ANCOVA) by correlating cognition scores with fractional anisotropy (FA) and the additional

WM-indices: axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD).

Abbreviations: FA, fractional anisotropy; LV, latent variable; PLS-C, partial least square correlation; WM,

white matter.
aSignificant interaction-effect. Slopes are visualized in Table S5.
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connection (Voogd & Baarsen, 2013), previously found to be aberrant

in patients with schizophrenia (Thomason & Thompson, 2011). CTC-

connectivity has been associated with symptom course in UHR-indi-

viduals, suggesting it may be a biomarker of disease progression

(Bernard, Orr, & Mittal, 2017). Cumulative evidence has suggested

that cerebello-cortical disconnections may play a major role in the

appearance of cognitive dysfunctions in patients with schizophrenia

(Andreasen & Pierson, 2008; Lekeu et al., 2002), while mediating the

involvement of cerebellum in higher-order cognitive processes such

as planning, verbal fluency, mental flexibility, abstract reasoning, and

working memory (Wang et al., 2003). Thus, our results add further

support for involvement of CTC-connections in higher cognitive pro-

cesses, which are susceptible to disease-specific impairments.

WM-alterations in the uncinate fasciculus have been demon-

strated in studies of patients with schizophrenia and schizotypal per-

sonality disorder (Kawashima et al., 2009; Kubicki et al., 2002). In

addition, the left uncinate fasciculus has been associated with IQ, ver-

bal and visual memory, executive function (Gurrera et al., 2007;

Nakamura et al., 2005), and language functions in schizotypal person-

ality disorder (Rodrigo et al., 2007). The uncinate fasciculus is part of

the limbic system and therefore implicated in emotion formation and

processing. We speculate, if our results could reflect that a majority of

the UHR-individuals were diagnosed with co-morbid affective and/or

anxiety disorders. This would be in line with the results from a recent

meta-analysis on WM-alterations across emotional disorders (affec-

tive and anxiety disorders), showing transdiagnostic communalities in

WM-tracts, with the uncinate fasciculus contributing significantly

(Jenkins et al., 2016). For the uncinate fasciculus as well as for medial

lemniscus, the analysis of covariance revealed a significant group

interaction-effect for FA and RD, but not for AD and MD. Changes in

FA explained by interaction with RD has been linked to myelination

(Table S6). Thus, dysmyelination may in part explain the aberrant FA

for UHR in left uncinate fasciculus and medial lemniscus. Dys-

myelination has been found to be a prominent feature of WM-

alterations in schizophrenia (Flynn et al., 2003; Seal et al., 2008).

The multivariate associations between patterns of cognitive per-

formance and the interaction-effect of the directionality of the

regional FA identified by the PLS-C, was confirmed in the explorative

ANCOVA-analysis. The directionality (lower vs. higher) of the FA-

alterations associated with the patterns of cognitive functions were

heterogenous and varied between regions. Although the primary PLS-

C analysis associated widespread higher FA with better cognitive

function, this was not the case for specific regions identified in the

secondary PLS-C analysis. It has previously been demonstrated, that

the meaning of the directionality of FA is specific to the patient sam-

ple and region of interest (Thomason & Thompson, 2011). The inter-

pretation of directionality is complex (Hoeft et al., 2007), as regions

characterized with higher FA has been proposed to possibly reflect

compensatory mechanisms to disease progress (Di Biase, Cropley,

Cocchi, Fornito, & Calamante, 2018), or lower FA reflecting disease-

specific processes such as demyelination (Haroutunian et al., 2014).

The localization of lower FA in SLF in the univariate voxel-wise and

ROI analyses could indicate another perspective regarding WM-

maturation, as the SLF in a meta-analysis on normal development of

FA has been identified as one of the most dynamically changing WM

tracts during adolescence and early adulthood (Peters et al., 2012). A

central developmental theory on WM-alterations explains, how

altered regional FA could be a result of aberrant developmental pro-

cesses (e.g., abnormal pruning), causing different age-trajectories in

WM-maturation (Kochunov et al., 2012; Pantelis et al., 2005). Unfor-

tunately, our study design does not allow us to further disentangle the

complex associations between cognition and WM.

The lack of correspondence between the results for regional WM-

abnormalities in the uni- and multivariate analyses, further illustrates

the complexity of higher-order cognitive functions relying on multiple

cerebral functional and structural prerequisites. These results under-

score that the application of complementary methods of analysis pro-

vide more complete information, revealing different aspects of the

WM-alterations in UHR-individuals. Further multivariate and multi-

modal studies are needed to identify the functional implications, and

the biological processes underlying specific combinations of WM-

indices.

An apparent strength of our study is the large sample-size of

116 UHR-individuals and 49 HC. Also, the uni- and multivariate statis-

tical methods were complementary in identifying WM-alterations. In

particular, PLS-C allowed for the investigation of the complex associa-

tions between cognitive function and WM.

Some limitations should be considered. Overall, the results of PLS-

C can be difficult to interpret due to the complexity of covarying mul-

tiple data. Nonetheless, we find the results from our study to be both

informative and supportive of recent findings and conceptualizations

in schizophrenia research. Another methodological limitation is due to

the skeleton-based analyses of regional FA, which only estimates the

characteristics of the underlying fiber-tracts.

Secondly, the UHR-individuals are a diagnostically heterogenous

and complex group, and the rates of transition to psychosis for our

participants is still unknown. Our patient sample may therefore be

regarded as a mixed help-seeking clinical population, rather than a

specific prodromal group prior to their onset of frank psychosis. Fur-

thermore, only UHR-individuals from the age of 18 could be included

due to the organizational distinction between adult versus child- and

adolescent psychiatry in Denmark. We also included UHR-individuals

with substance abuse- and dependency to ensure the large sample-

size and the external validity. However, we attempted to account for

this limitation by testing the effect of both medication and substance

abuse- and dependency posthoc. Finally, the difference in sample-size

between UHR-individuals and HC may reduce statistical power in the

between-group analyses.

In conclusion, our univariate analyses confirmed the expectation

that UHR-individuals displayed subtle WM-alterations and impaired

cognition. The multivariate PLS-C analyses identified differential asso-

ciations between patterns of cognitive function and WM in UHR-

individuals compared to HC. Widespread higher FA was strongly

linked to better cognitive performance for UHR-individuals, but not

for HCs. The involvement of specific cerebello-thalamo-cortical-

connections in higher cognitive processes was supported, and the
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altered associations between cognitive functions and WM may

be explained by underlying region-specific dysmyelination in UHR-

individuals. Longitudinal studies are required to determine if these

cross-sectional associations between cognition and WM microstruc-

ture are static, or change over time depending on the symptom course

or clinical interventions.
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