95 research outputs found

    children: differentiation using diffusion-weighted magnetic resonance imaging

    Get PDF
    Purpose To evaluate differences in magnetic resonance imaging (MRI) appearance between infantile hemangiomas and rhabdomyosarcomas of the orbit in pediatric patients using diffusion-weighted imaging. Methods A multicenter retrospective review of MRIs of pediatric patients with infantile hemangiomas and rhabdomyosarcomas of the orbit was performed. MRI examinations from a total of 21 patients with infantile hemangiomas and 12 patients with rhabdomyosarcomas of the orbit were independently reviewed by two subspecialty board-certified neuroradiologists masked to the diagnosis. A freehand region of interest was placed in the mass to obtain the mean apparent diffusion coefficient (ADC) value of the mass as well as within the medulla to obtain a ratio of the ADC mass to the medulla. A t test was used to compare mean ADC and ADC ratios between the two groups. Receiver operating characteristic analysis was performed to determine ADC value and ADC ratio thresholds for differentiation of infantile hemangioma and rhabdomyosarcoma. Results There was a statistically significant difference in the mean ADC value of infantile hemangiomas compared to rhabdomyosarcomas (1527 × 10−6 mm2/s vs 782 × 10−6 mm2/s; P = 0.0001) and the ADC ratio of the lesion to the medulla (1.77 vs 0.92; P = 0.0001). An ADC threshold of <1159 × 10−6 mm2/sec and an ADC ratio of <1.38 differentiated rhabdomyosarcoma from infantile hemangioma (sensitivity 100% and 100%; specificity 100% and 100%) with area under the curve of 1.0 and 1.0, respectively. Conclusions In conjunction with conventional MRI sequences, ADC values obtained from diffusion-weighted MRI are useful to differentiate orbital infantile hemangiomas from rhabdomyosarcomas in pediatric patients

    Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models

    Get PDF
    Tropical forests vary substantially in the densities of trees of different sizes and thus in above-ground biomass and carbon stores. However, these tree size distributions show fundamental similarities suggestive of underlying general principles. The theory of metabolic ecology predicts that tree abundances will scale as the -2 power of diameter. Demographic equilibrium theory explains tree abundances in terms of the scaling of growth and mortality. We use demographic equilibrium theory to derive analytic predictions for tree size distributions corresponding to different growth and mortality functions. We test both sets of predictions using data from 14 large-scale tropical forest plots encompassing censuses of 473 ha and \u3e 2 million trees. The data are uniformly inconsistent with the predictions of metabolic ecology. In most forests, size distributions are much closer to the predictions of demographic equilibrium, and thus, intersite variation in size distributions is explained partly by intersite variation in growth and mortality. © 2006 Blackwell Publishing Ltd/CNRS

    Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests

    Get PDF
    The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests

    Development of standard clinical endpoints for use in dengue interventional trials: introduction and methodology

    Get PDF
    Background: As increasing numbers of dengue vaccines and therapeutics are in clinical development, standardized consensus clinical endpoint definitions are urgently needed to assess the efficacy of different interventions with respect to disease severity. We aimed to convene dengue experts representing various sectors and dengue endemic areas to review the literature and propose clinical endpoint definitions for moderate and severe disease based on the framework provided by the WHO 2009 classification. Methods: The endpoints were first proposed and discussed in a structured expert consultation. After that, the Delphi method was carried out to assess the usefulness, validity and feasibility of the standardized clinical disease endpoints for interventional dengue research. Results: Most respondents (&gt; 80%) agreed there is a need for both standardized clinical endpoints and operationalization of severe endpoints. Most respondents (67%) felt there is utility for moderate severity endpoints, but cited challenges in their development. Hospitalization as a moderate endpoint of disease severity or measure of public health impact was deemed to be useful by only 47% of respondents, but 89% felt it could bring about supplemental information if carefully contextualized according to data collection setting. Over half of the respondents favored alignment of the standard endpoints with the WHO guidelines (58%), but cautioned that the endpoints could have ramifications for public health practice. In terms of data granularity of the endpoints, there was a slight preference for a categorical vs numeric system (e.g. 1–10) (47% vs 34%), and 74% of respondents suggested validating the endpoints using large prospective data sets. Conclusion: The structured consensus-building process was successful taking into account the history of the debate around potential endpoints for severe dengue. There is clear support for the development of standardized endpoints for interventional clinical research and the need for subsequent validation with prospective data sets. Challenges include the complexity of developing moderate disease research endpoints for dengue

    The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure

    Get PDF
    Resource allocation within trees is a zero-sum game. Unavoidable trade-offs dictate that allocation to growth-promoting functions curtails other functions, generating a gradient of investment in growth versus survival along which tree species align, known as the interspecific growth–mortality trade-off. This paradigm is widely accepted but not well established. Using demographic data for 1,111 tree species across ten tropical forests, we tested the generality of the growth–mortality trade-off and evaluated its underlying drivers using two species-specific parameters describing resource allocation strategies: tolerance of resource limitation and responsiveness of allocation to resource access. Globally, a canonical growth–mortality trade-off emerged, but the trade-off was strongly observed only in less disturbance-prone forests, which contained diverse resource allocation strategies. Only half of disturbance-prone forests, which lacked tolerant species, exhibited the trade-off. Supported by a theoretical model, our findings raise questions about whether the growth–mortality trade-off is a universally applicable organizing framework for understanding tropical forest community structure

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Consistent patterns of common species across tropical tree communities

    Get PDF
    Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees.Publisher PDFPeer reviewe

    Latitudinal patterns in stabilizing density dependence of forest communities

    Get PDF
    Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10,11,12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests
    corecore