342 research outputs found

    Fishery and Aquaculture Relationship in the Mediterranean: Present and Future

    Get PDF
    Although the Mediterranean represents only 0.8% of the world seas, it is the site of a very long-established fishing activity, characterized mainly by multispecific catch and by artisanal or coastal activity, resulting from a mosaic of very diversified structures and gears, along more than 45,000 km of coastline. Two main biological features of this sea are the occurrence of a large richness of species (it represents 5.5% - 7% of world marine fauna and 16.6% of macrophyta), which stands in contrast with its ‘trophic poverty’ and the absence of large monospecific fishery, except for some small and large pelagic fish. Another biological characteristic of Mare Nostrumis the high invasion of exotic species, some exploited by fishery and aquaculture, some others quite dangerous. For the entire Mediterranean and Black Sea, the production (catch + aquaculture) had been steadily increasing over the period 1972-1988 from 1,140,000 t to 2,080,000 t . The period 1988-1991 has shown a drastic drop in catches (in 1991: 1,400,000 t). From 1990 to 1995 the total catch increased to 1,701,379 t then decreased and in 2000 reached 1,485,046 t . In 2000 Turkey had the first place with 496,174 t, 26.9% of the total value (1,846,026 t, including fishing and aquaculture), followed by Italy with 25%, Greece 9%, Spain 7.6% and Algeria 5.4%. As in many parts of the world, aquaculture production in the Mediterranean is rapidly expanding. In 1970 the total aquaculture production was about 18,297 t of which 74.3% produced in Italy. In 2000 a value of 358,614 t was reached, about 1/4 of the total fishery catch, while the world aquaculture production corresponds to half of the world total catch. Italy is still the main producer with 46.7% , followed by Greece with 21.5%, Turkey 9.9% and France 6.7%. A sharp drop in the production of the European eel ( Anguilla anguilla) and of the European flat oyster ( Ostrea edulis) is recorded. Positive and negative interactions between fishery and aquaculture are described for environment, food, juveniles, breeders, discards and market. Special attention is devoted to tuna farming, artificial reef and vallicultura. The response of governments and decision makers to the results and suggestions from marine scientists, proposals for urgent action in order to succeed sustainability and priority marine research areas are briefly described. Some urgent needs are outlined

    Marine alien species in Italy: A contribution to the implementation of descriptor D2 of the Marine Strategy Framework Directive

    Get PDF
    A re-examination of marine alien species or Non Indigenous Species (NIS) reported in Italian Seas, until December 2018, is provided, focusing on establishment success, year of first record, origin, potential invasiveness, and likely pathways, in particular. Furthermore, their distribution is assessed according to the marine subregions outlined by the European Union (EU) Marine Strategy Framework Directive: Adriatic Sea (ADRIA), Ionian Sea and Central Mediterranean Sea (CMED), and Western Mediterranean Sea (WMED). In Italy, 265 NIS have been detected with the highest number of species being recorded in the CMED (154 species) and the WMED (151 species) subregions, followed by the ADRIA (143) subregion. Most of these species were recorded in more than one subregion. One hundred and eighty (180 or 68%) NIS have established stable populations in Italian Seas among which 26 have exhibited invasive traits. As regards the taxa involved, Macrophyta rank first with 65 taxa. Fifty-five of them are established in at least one subregion, mostly in the ADRIA and the CMED. Crustacea rank second with 48 taxa, followed by Polychaeta with 43 taxa, Mollusca with 29 taxa, and Fishes with 28 taxa, which were mainly reported from the CMED. In the period 2012-2017, 44 new alien species were recorded, resulting in approximately one new entry every two months. Approximately half of the NIS (~52%) recorded in Italy have most likely arrived through the transport-stowaway pathway related to shipping traffic (~28% as biofoulers, ~22% in ballast waters, and ~2% as hitchhikers). The second most common pathway is the unaided movement with currents (~19%), followed by the transport-contaminant on farmed shellfishes pathway (~18%). "Unaided" is the most common pathway for alien Fishes, especially in the CMED; escapes from confinement account for ~3% and release in nature for ~2%. The present NIS distribution hotspots for new introductions were defined at the first recipient area/location in Italy. In the ADRIA, the hotspot, Venice, accounts for the highest number of alien taxa introduced in Italy, with 50 newly recorded taxa. In the CMED subregion, the hotspots of introduction are the Taranto and Catania Gulfs, hosting 21 first records each. The Strait of Sicily represents a crossroad between alien taxa from the Atlantic Ocean and the Indo-Pacific area. In the WMED, bioinvasion hotspots include the Gulfs of Naples, Genoa and Livorno. This review can serve as an updated baseline for future coordination and harmonization of monitoring initiatives under international, EU and regional policies, for the compilation of new data from established monitoring programs, and for rapid assessment surveys

    Full-length TDP-43 and its C-terminal domain form filamentsin vitrohaving non-amyloid properties

    Get PDF
    Accumulation of ubiquitin-positive, tau- and α-synuclein-negative intracellular inclusions of TDP-43 in the central nervous system represents the major hallmark correlated to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). Such inclusions have variably been described as amorphous aggregates or more structured deposits having amyloid properties. Here we have purified full-length TDP-43 (FL TDP-43) and its C-terminal domain (Ct TDP-43) to investigate the morphological, structural and tinctorial features of aggregates formed in vitro by them at pH 7.4 and 37 °C. AFM images indicate that both protein variants show a tendency to form filaments. Moreover, we show that both FL TDP-43 and Ct TDP-43 filaments possess a largely disordered secondary structure, as ascertained by far-UV circular dichroism and Fourier transform infra-red spectroscopy, do not bind Congo red and induce a very weak increase of thioflavin T fluorescence, indicating the absence of a clear amyloid-like signature

    Enhancing Eco-Engineering of Coastal Infrastructure with Eco-Design: Moving from Mitigation to Integration

    Get PDF
    Eco-design aims to enhance eco-engineering practices of coastal infrastructure projects in support of ecological functions before these projects are developed and implemented. The principle is to integrate eco-engineering concepts in the early phases of project design. Although ecological losses are inherent in any construction project, the goal of eco-design is to introduce environmental considerations upfront during technical design choices, and not just afterwards when evaluating the need for reduction or compensatory mitigation. It seeks to reduce the negative impacts of marine infrastructure by introducing a new reflexive civil engineering approach. It requires a valuation of nature with the aim of reducing impacts by incorporating intelligent design and habitat-centered construction. The principle advocated in this paper is to design coastal infrastructures, at micro- to macro-biological scales, using a combination of fine and large scale physical and chemical modifications to hard substrates, within the scope of civil engineering requirements. To this end, we provide a brief introduction to the factors involved in concrete-biota interactions and propose several recommendations as a basis to integrate ecology into civil engineering projects, specifically addressed to concrete

    Reproduction in Heteroteuthis dispar (RĂŒppell, 1844) (Mollusca: Cephalopoda): a sepiolid reproductive adaptation to an oceanic lifestyle

    Get PDF
    Small cephalopods of the genus Heteroteuthis are the most pelagic members in the family Sepiolidae. This study examines the reproductive biology of Heteroteuthis dispar (RĂŒppell, 1844), the first such study on any member of the genus, based on 46 specimens (27 females and 19 males) collected during the Mar-Eco cruise in the North Atlantic in the region of the Mid-Atlantic Ridge in 2004, and compares it with reproductive features in the less pelagic members of the family. The unusually large spermatophores of the males have a very small ejaculatory apparatus and cement body, relative to the size of the sperm mass. Females first mate when they are still maturing: a large sperm mass (up to 3.4% of the female body mass), consisting of one to several spermatangia, was found in an internal seminal receptacle of the majority of the females examined regardless of their maturity state. The seminal receptacle has a unique form and position in this species. The receptacle is a thin-walled sac at the posterior end of the visceral mass that is an outpocketing of, and opens into, the visceropericardial coelom. Spermatangia and sperm from the spermatangia apparently enter into the visceropericardial coelom (which is mostly occupied by the ovary) from the seminal receptacle indicating that ova are fertilised internally, a strategy unknown for decapodiform cephalopods (squid and cuttlefish), but present in most octopods. Fecundity of Heteroteuthis dispar (1,100–1,300 oocytes) is much higher than in other sepiolids whereas the egg size (mean max. length ∌1.6 mm) is the smallest within the family. Spawning is continuous (sensu Rocha et al. in Biol Rev 76:291–304, 2001). These and other reproductive traits are discussed as being adaptations to an oceanic lifestyle

    MEDITS-based information on the deep water red shrimps Aristaeomorpha foliacea and Aristeus antennatus (Crustacea: Decapoda: Aristeidae)

    Get PDF
    Special Volume: Mediterranean marine demersal resources: the Medits international trawl survey (1994-1999)The application of statistical models on a time series of data arising from the MEDITS International Trawl Survey, an experimental demersal resources survey carried out during six years (1994-1999) in the same season of the year (late spring - early summer) using the same fishing gear in a large part of the Mediterranean, has allowed for a study to compare, for the first time, the space-time distribution, abundance, and size structure of the two Aristeids Aristaeomorpha foliacea and Aristeus antennatus throughout most of the Mediterranean Sea. This research has shown a large variability among the six reference areas, that were arbitrarily defined within the basin. In particular the two shrimps do not seem to present any correlation or yield continuity in the years. The same lack of homogeneity was also observed in the time trend of the abundances and frequencies of each of the two species. These data seem to confirm the intrinsic variability of the species, the cause of which is still unknown and undocumented. Nevertheless, a longitudinal gradient of catches has been observed where A. antennatus is more abundant in the west and A. foliacea in the east of the basinVersiĂłn del editor1,006

    Plasminogen activation triggers transthyretin amyloidogenesis in vitro

    Get PDF
    Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro. In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo. Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro. Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo. Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation

    Habitat Selection and Temporal Abundance Fluctuations of Demersal Cartilaginous Species in the Aegean Sea (Eastern Mediterranean)

    Get PDF
    Predicting the occurrence of keystone top predators in a multispecies marine environment, such as the Mediterranean Sea, can be of considerable value to the long-term sustainable development of the fishing industry and to the protection of biodiversity. We analysed fisheries independent scientific bottom trawl survey data of two of the most abundant cartilaginous fish species (Scyliorhinus canicula, Raja clavata) in the Aegean Sea covering an 11-year sampling period. The current findings revealed a declining trend in R. clavata and S. canicula abundance from the late â€Č90 s until 2004. Habitats with the higher probability of finding cartilaginous fish present were those located in intermediate waters (depth: 200–400 m). The present results also indicated a preferential species' clustering in specific geographic and bathymetric regions of the Aegean Sea. Depth appeared to be one of the key determining factors for the selection of habitats for all species examined. With cartilaginous fish species being among the more biologically sensitive fish species taken in European marine fisheries, our findings, which are based on a standardized scientific survey, can contribute to the rational exploitation and management of their stocks by providing important information on temporal abundance trends and habitat preferences
    • 

    corecore