347 research outputs found

    Characterization and transfection properties of lipoplexes stabilized with novel exchangeable polyethylene glycol-lipid conjugates

    Get PDF
    The positive charge of cationic-lipid/DNA complexes (lipoplexes) renders them highly susceptible to interactions with the biological milieu, leading to aggregation and destabilization, and rapid clearance from the blood circulation. In this study we synthesized and characterized a set of novel amphiphiles, based on N-methyl-4-alkylpyridinium chlorides (SAINTs), to which a PEG moiety is coupled. Plasmids were fully protected in lipoplexes prepared from cationic SAINT-2 lipid and stabilized with SAINT PEGs. Our results demonstrate that SAINT-PEG stabilization is transient, and permits DNA to be released from these lipoplexes. The rate of SAINT PEG transfer from lipoplexes to acceptor liposomes was determined by the nature of the lipid anchor. Increased hydrophobicity, by lengthening the alkyl chain, resulted in a decrease of the rate of DNA release from the lipoplexes. Chain unsaturation had the opposite effect. Similarly, the in vitro transfection potency of lipoplexes containing PEG-SAINT derivatives was sensitive to the length and (un)saturation of the alkyl chain. However, the internalization of SAINT PEG stabilized lipoplexes is determined by their charge, rather than by the concentration of the polymer conjugate. Lipoplexes targeted to cell-surface epithelial glycoprotein 2, by means of a covalently coupled monoclonal antibody, were specifically internalized by cells expressing this antigen. (C) 2003 Elsevier B.V. All rights reserved

    Identification of key somatic features that are common and the ones that differ between swim strokes through allometric modeling

    Get PDF
    The aim of this study was to explore which key somatic features are common to four swim strokes and medley, and specifically to identify which characteristics benefit only specific strokes. Methods: The sample was composed of 130 swimmers (95 males aged 19.5 ± 2.9 years and 35 females aged 18.4 ± 2.8 years). A set of anthropometric variables was used to predict swimming speed in the four swimming strokes and medley. Results: A multiplicative model with allometric body size components was used to identify the demographic and anthropometric predictors of swimming speed. Trunk height and waist circumference were the only variables significantly different among swimming strokes (p < 0.05). Associations between swimming speed and arm length were similar in breaststroke and medley, and in freestyle, backstroke and butterfly (R2 = 60.9%). The model retained as swimming speed predictors the age2, upper body circumference, hand breadth, waist circumference, and subscapular skinfold thickness (these last two had negative associations). Conclusion: All these predictors were common to all four swim strokes and medley. Arm length was also retained as a significant predictor, but this one varied significantly between the four different swim strokes and medley. These findings highlight the importance of having a “V-shape” trunk, longer upper limbs, and large hands as predictors of swimming performanceNG and JM were supported by National Funds (FCT—Portuguese Foundation for Science and Technology) under the project UIDB/DTP/04045/2020.info:eu-repo/semantics/publishedVersio

    Membrane contact sites between pathogen-containing compartments and host organelles

    Get PDF
    Intracellular pathogens survive and replicate within specialised membrane-bound compartments that can be considered as pseudo-organelles. Using the obligate intracellular bacterium Chlamydia as an illustrative example, we consider the modes of lipid transport between pathogen-containing compartments and host organelles, including the formation of static membrane contact sites. We discuss how lipid scavenging can be mediated via the reprogramming of cellular transporters at these interfaces and describe recent data suggesting that pathogen effectors modulate the formation of specific membrane contacts. Further study of these emerging mechanisms is likely to yield new insights into the cell biology of lipid transport and organelle communication, which highlights potential new targets and strategies for future therapeutics

    Role of liposome and peptide in the synergistic enhancement of transfection with a lipopolyplex vector

    Get PDF
    Lipopolyplexes are of widespread interest for gene therapy due to their multifunctionality and high transfection efficiencies. Here we compared the biological and biophysical properties of a lipopolyplex formulation with its lipoplex and polyplex equivalents to assess the role of the lipid and peptide components in the formation and function of the lipopolyplex formulation. We show that peptide efficiently packaged plasmid DNA forming spherical, highly cationic nanocomplexes that are taken up efficiently by cells. However, transgene expression was poor, most likely due to endosomal degradation since the polyplex lacks membrane trafficking properties. In addition the strong peptide-DNA interaction may prevent plasmid release from the complex and so limit plasmid DNA availability. Lipid/DNA lipoplexes, on the other hand, produced aggregated masses that showed poorer cellular uptake than the polyplex but contrastingly greater levels of transgene expression. This may be due to the greater ability of lipoplexes relative to polyplexes to promote endosomal escape. Lipopolyplex formulations formed spherical, cationic nanocomplexes with efficient cellular uptake and significantly enhanced transfection efficiency. The lipopolyplexes combined the optimal features of lipoplexes and polyplexes showing optimal cell uptake, endosomal escape and availability of plasmid for transcription, thus explaining the synergistic increase in transfection efficiency

    Targeting of a Chlamydial Protease Impedes Intracellular Bacterial Growth

    Get PDF
    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target

    Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells

    Get PDF
    Design of an efficient delivery system is a generally recognised bottleneck in translation of siRNA technology into clinic. Despite research efforts, cellular processes that determine efficiency of siRNA silencing achieved by different delivery formulations remain unclear. Here, we investigated the mechanism(s) of cellular internalisation of a model siRNA-loaded liposome system in a correlation to the engagement of delivered siRNA with its target and consequent silencing by adopting siRNA molecular beacon technology. Probing of cellular internalisation pathways by a panel of pharmacological inhibitors indicated that clathrin-mediated (dynamin-dependent) endocytosis, macropinocytosis (dynamine independent), and cell membrane cholesterol dependent process(es) (clathrin and caveolea-independent) all play a role in the siRNA-liposomes internalization. The inhibition of either of these entry routes was, in general, mirrored by a reduction in the level of siRNA engagement with its target mRNA, as well as in a reduction of the target gene silencing. A dramatic increase in siRNA engagement with its target RNA was observed on disruption of endosomal membrane (by chloroquine), accompanied with an increased silencing. The work thus illustrates that employing molecular beacon siRNA technology one can start to assess the target RNA engagement – a stage between initial cellular internalization and final gene silencing of siRNA delivery systems

    Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery

    Get PDF
    Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, β-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form

    Accelerated stem cell labeling with ferucarbotran and protamine

    Get PDF
    To develop and characterize a clinically applicable, fast and efficient method for stem cell labeling with ferucarbotran and protamine for depiction with clinical MRI. The hydrodynamic diameter, zeta potential and relaxivities of ferucarbotran and varying concentrations of protamine were measured. Once the optimized ratio was found, human mesenchymal stem cells (MSCs) were labeled at varying incubation times (1–24 h). Viability was assessed via Trypan blue exclusion testing. 150,000 labeled cells in Ficoll solution were imaged with T1-, T2- and T2*-weighted sequences at 3 T, and relaxation rates were calculated. Varying the concentrations of protamine allows for easy modification of the physicochemical properties. Simple incubation with ferucarbotran alone resulted in efficient labeling after 24 h of incubation while assisted labeling with protamine resulted in similar results after only 1 h. Cell viability remained unaffected. R2 and R2* relaxation rates were drastically increased. Electron microscopy confirmed intracellular iron oxide uptake in lysosomes. Relaxation times correlated with results from ICP-AES. Our results show internalization of ferucarbotran can be accelerated in MSCs with protamine, an approved heparin antagonist and potentially clinically applicable uptake-enhancing agent

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses
    corecore