222 research outputs found

    Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.SĂŁo Paulo Research Foundation FAPESP 2015/24408-42017/50028-0 (SPRINT)2019/03552-0CNPq (PROTAX) 440539/2015-3CNPq (Research Productivity Scholarship)301293/2019-

    The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP)

    Get PDF
    Venom is a known source of novel antimicrobial natural products. The substantial, increasing number of these discoveries have unintentionally culminated in the misconception that venom and venom-producing glands are largely sterile environments. Culture-dependent and -independent studies on the microbial communities in venom microenvironments reveal the presence of archaea, algae, bacteria, endoparasites, fungi, protozoa, and viruses. Venom-centric microbiome studies are relatively sparse to date and the adaptive advantages that venom-associated microbes might offer to their hosts, or that hosts might provide to venom-associated microbes, remain unknown. We highlight the potential for the discovery of venom-microbiomes within the adaptive landscape of venom systems. The considerable number of known, convergently evolved venomous animals juxtaposed with the comparatively few studies to identify microbial communities in venom provides new possibilities for both biodiversity and therapeutic discoveries. We present an evidence-based argument for integrating microbiology as part of venomics to which we refer to as venom-microbiomics. We also introduce iVAMP, the Initiative for Venom Associated Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing consortium for interested parties to contribute and collaborate within this subdiscipline. Our consortium seeks to support diversity, inclusion and scientific collaboration among all researchers interested in this subdiscipline

    The Nature and Origin of Substructure in the Outskirts of M31. I. Surveying the Stellar Content with HST/ACS

    Full text link
    We present the largest and most detailed survey to date of the stellar populations in the outskirts of M31 based on the analysis of 14 deep HST/ACS pointings spanning the range 11.5-45.0 kpc. We conduct a quantitative comparison of the resolved stellar populations in these fields and identify several striking trends. The color-magnitude diagrams (CMDs), which reach ~3 magnitudes below the red clump, can be classified into two main categories based on their morphologies. `Stream-like' fields, so named for their similarity to the CMD of the giant stellar stream, are characterized by a red clump that slants bluewards at fainter magnitudes and an extended horizontal branch. On the other hand, `disk-like' fields exhibit rounder red clumps with significant luminosity width, lack an obvious horizontal branch and show evidence for recent star formation (~0.25 - 2.0 Gyr ago). We compare the spatial and line-of-sight distribution of stream-like fields with a recent simulation of the giant stream progenitor orbit and find an excellent agreement. These fields, found across the face of M31, attest to the high degree of pollution caused by this event. Disk-like material resides in the extended disk structure of M31 and is detected out to 44 kpc (projected); the uniform populations in these fields, including the ubiquitous presence of young populations, and the strong rotation reported elsewhere are most consistent with a scenario in which this structure has formed through heating and disruption of the existing thin disk, perhaps due to the impact of the giant stream progenitor. Our comparative analysis sheds new light on the likely composition of two of the ultra-deep pointings formerly presented as pure outer disk and pure halo in the literature.Comment: Accepted to AJ. ftp://ftp.roe.ac.uk/pub/jcr/richardson2008.pdf contains high resolution figures. 16 pages, 10 figures; best seen in color on above lin

    The Star Formation History and Dust Content in the Far Outer Disc of M31

    Full text link
    We present a detailed analysis of two fields located 26 kpc (~5 scalelengths) from the centre of M31. One field samples the major axis populations--the Outer Disc field--while the other is offset by ~18' and samples the Warp in the stellar disc. The CMDs based on HST/ACS imaging reach old main-sequence turn-offs (~12.5 Gyr). We apply the CMD-fitting technique to the Warp field to reconstruct the star formation history (SFH). We find that after undergoing roughly constant SF until about 4.5 Gyr ago, there was a rapid decline in activity and then a ~1.5 Gyr lull, followed by a strong burst lasting 1.5 Gyr and responsible for 25% of the total stellar mass in this field. This burst appears to be accompanied by a decline in metallicity which could be a signature of the inflow of metal-poor gas. The onset of the burst (~3 Gyr ago) corresponds to the last close passage of M31 and M33 as predicted by detailed N-body modelling, and may have been triggered by this event. We reprocess the deep M33 outer disc field data of Barker et al. (2011) in order to compare consistently-derived SFHs. This reveals a similar duration burst that is exactly coeval with that seen in the M31 Warp field, lending further support to the interaction hypothesis. The complex SFHs and the smoothly-varying age-metallicity relations suggest that the stellar populations observed in the far outer discs of both galaxies have largely formed in situ rather than migrated from smaller galactocentric radii. The strong differential reddening affecting the CMD of the Outer Disc field prevents derivation of the SFH. Instead, we quantify this reddening and find that the fine-scale distribution of dust precisely follows that of the HI gas. This indicates that the outer HI disc of M31 contains a substantial amount of dust and therefore suggests significant metal enrichment in these parts, consistent with inferences from our CMD analysis.Comment: Abstract shortened. 17 pages, 12 figures (+ 6 pages & 5 figures in Appendix). MNRAS, in pres

    A Chromosome-level genome assembly of the highly heterozygous sea urchin Echinometra sp. EZ reveals adaptation in the regulatory regions of stress response genes

    Get PDF
    Echinometra is the most widespread genus of sea urchin and has been the focus of a wide range of studies in ecology, speciation, and reproduction. However, available genetic data for this genus are generally limited to a few select loci. Here, we present a chromosome-level genome assembly based on 10x Genomics, PacBio, and Hi-C sequencing for Echinometra sp. EZ from the Persian/Arabian Gulf. The genome is assembled into 210 scaffolds totaling 817.8 Mb with an N50 of 39.5 Mb. From this assembly, we determined that the E. sp. EZ genome consists of 2n = 42 chromosomes. BUSCO analysis showed that 95.3% of BUSCO genes were complete. Ab initio and transcript-informed gene modeling and annotation identified 29,405 genes, including a conserved Hox cluster. E. sp. EZ can be found in high-temperature and high-salinity environments, and we therefore compared E. sp. EZ gene families and transcription factors associated with environmental stress response (“defensome”) with other echinoid species with similar high-quality genomic resources. While the number of defensome genes was broadly similar for all species, we identified strong signatures of positive selection in E. sp. EZ noncoding elements near genes involved in environmental response pathways as well as losses of transcription factors important for environmental response. These data provide key insights into the biology of E. sp. EZ as well as the diversification of Echinometra more widely and will serve as a useful tool for the community to explore questions in this taxonomic group and beyond

    Taking measure of the Andromeda halo: a kinematic analysis of the giant stream surrounding M31

    Full text link
    We present a spectroscopic survey of the giant stellar stream found in the halo of the Andromeda galaxy. Taken with the DEIMOS multi-object spectrograph on the Keck2 telescope, these data display a narrow velocity dispersion of 11+/-3 km/s, with a steady radial velocity gradient of 245 km/s over the 125 kpc radial extent of the stream studied so far. This implies that the Andromeda galaxy possesses a substantial dark matter halo. We fit the orbit of the stream in different galaxy potential models. In a simple model with a composite bulge, disk and halo, where the halo follows a ``universal'' profile that is compressed by the formation of the baryonic components, we find that the kinematics of the stream require a total mass inside 125 kpc of 7.5^(+2.5)_(-1.3) x 10^{11} M_Sun, or more than 5.4 x 10^{11} M_Sun at the 99% confidence level. This is the first galaxy in which it has been possible to measure the halo mass distribution by such direct dynamical means over such a large distance range. The resulting orbit shows that if M32 or NGC 205 are connected with the stream, they must either trail or lag the densest region of the stream by more than 100 kpc. Furthermore, according to the best-fit orbit, the stream passes very close to M31, causing its demise as a coherent structure and producing a fan of stars that will pollute the inner halo, thereby confusing efforts to measure the properties of genuine halo populations. Our data show that several recently identified planetary nebulae, which have been proposed as evidence for the existence of a new companion of M31, are likely members of the Andromeda Stream.Comment: 9 pages, 7 figures, accepted by MNRA

    A tidally distorted dwarf galaxy near NGC 4449

    Full text link
    NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8 megaparsecs. It is wreathed in an extraordinary neutral hydrogen (H I) complex, which includes rings, shells and a counter-rotating core, spanning 90 kiloparsecs. NGC 4449 is relatively isolated, although an interaction with its nearest known companion-the galaxy DDO 125, some 40 kpc to the south-has been proposed as being responsible for the complexity of its HI structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7 kpc, with a full extent of around 8 kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20 kpc from the galaxy's centre.Comment: Published in Nature, February 9, 2012. Nature, 482, 192-194 Published article available at http://www.nature.com/nature/journal/v482/n7384//full/nature10837.htm
    • …
    corecore