### Northumbria Research Link

Citation: Ul-Hasan, Sabah, Rodríguez-Román, Eduardo, Reitzel, Adam M., Adams, Rachelle M.M., Herzig, Volker, Trim, Steven A., Saviola, Anthony J., Nobile, Clarissa J., Stiers, Erin E., Moschos, Sterghios, Keiser, Carl N., Petras, Daniel, Moran, Yehu and Colston, Timothy J. (2019) The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP). Toxicon: X, 4. p. 100016. ISSN 2590-1710

Published by: Elsevier

URL: https://doi.org/10.1016/j.toxcx.2019.100016 < https://doi.org/10.1016/j.toxcx.2019.100016 >

This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/40856/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)



# University Library

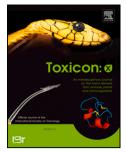
### Journal Pre-proof

The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP)

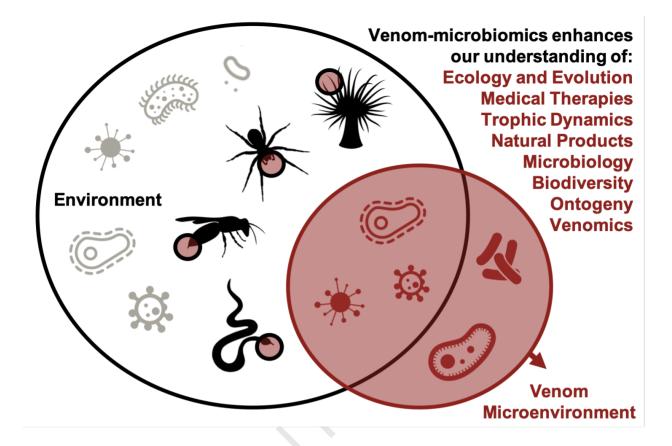
Sabah Ul-Hasan, Eduardo Rodríguez-Román, Adam M. Reitzel, Rachelle M.M. Adams, Volker Herzig, Steven A. Trim, Anthony J. Saviola, Clarissa J. Nobile, Erin E. Stiers, Sterghios A. Moschos, Carl N. Keiser, Daniel Petras, Yehu Moran, Timothy J. Colston

PII: S2590-1710(19)30013-X

DOI: https://doi.org/10.1016/j.toxcx.2019.100016


Reference: TOXCX 100016

To appear in: Toxicon X


Please cite this article as: UI-Hasan, S., Rodríguez-Román, E., Reitzel, A.M, Adams, R.M.M., Herzig, V., Trim, S.A., Saviola, A.J., Nobile, C.J., Stiers, E.E., Moschos, S.A., Keiser, C.N., Petras, D., Moran, Y., Colston, T.J., The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP), *Toxicon X*, https://doi.org/10.1016/j.toxcx.2019.100016.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.



#### Journal Pre-proof



1 Toxicon:X – Correspondence

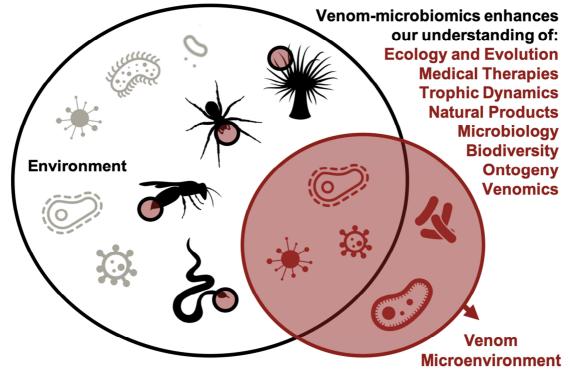
## The emerging field of venom-microbiomics for exploring venom as a microenvironment, and the corresponding Initiative for Venom Associated Microbes and Parasites (iVAMP)

- 5
  6 Sabah Ul-Hasan<sup>1,2</sup>, Eduardo Rodríguez-Román<sup>3</sup>, Adam M Reitzel<sup>4</sup>, Rachelle M. M. Adams<sup>5</sup>,
- Volker Herzig<sup>6</sup>, Clarissa J. Nobile<sup>2</sup>, Anthony J. Saviola<sup>7</sup>, Steven A. Trim<sup>8</sup>, Erin E. Stiers<sup>9</sup>
- 8 Sterghios A. Moschos<sup>10</sup>, Carl N. Keiser<sup>11</sup>, Daniel Petras<sup>12,13</sup>, Yehu Moran<sup>14</sup>, Timothy J. Colston<sup>15</sup>
- 9
- <sup>1</sup>Quantitative and Systems Biology Graduate Program, University of California Merced, Merced,
   CA 95343 USA
- <sup>2</sup>Department of Molecular and Cell Biology, School of Natural Sciences, University of
- 13 California Merced, Merced, CA, 95343, USA
- <sup>3</sup>Center for Microbiology and Cell Biology, Venezuelan Institute for Scientific Research.
- 15 Caracas 1020A, Venezuela
- <sup>4</sup>Department of Biological Sciences, University of North Carolina at Charlotte, NC
- 17 28223 USA
- <sup>5</sup>Department of Evolution, Ecology and Organismal Biology, The Ohio State University,
- 19 Columbus, OH 43212 USA
- <sup>6</sup>Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072,
- 21 Australia
- <sup>7</sup>Department of Molecular Medicine and Neurobiology, The Scripps Research Institute, La Jolla,
   CA 92037, USA
- 24 <sup>8</sup>Venomtech Ltd, Discovery Park, Sandwich, Kent, CT13 9ND, UK
- <sup>9</sup>Department of Biological Science, Clemson University, Clemson, SC 29634 USA
- <sup>10</sup>Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University,
   Newcastle, Tyne and Wear, NE1 8ST, UK
- 28 <sup>11</sup>Department of Biology, University of Florida, Gainesville, FL 32611 USA
- 29 <sup>12</sup>Collaborative Mass Spectrometry Innovation Center, University of California San Diego, USA
- 30 <sup>13</sup>Scripps Institution of Oceanography, University of California San Diego, USA
- 31 <sup>14</sup>Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life
- 32 Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- <sup>15</sup>Department of Biological Science, Florida State University, Tallahassee, FL 32306 USA
- 34
- 35 Address Correspondence to:
- 36 Sabah Ul-Hasan
- 37 bysabahulhasan@gmail.com

#### 38 Abstract

- 39 Venom is a known source of novel antimicrobial natural products. The substantial, increasing
- 40 number of these discoveries have unintentionally culminated in the misconception that venom
- 41 and venom-producing glands are largely sterile environments. Culture-dependent and -
- 42 independent studies on the microbial communities in venom microenvironments reveal the
- 43 presence of archaea, algae, bacteria, fungi, protozoa, and viruses. Venom-centric microbiome
- studies are relatively sparse to date with the adaptive advantages that venom-associated microbes
- 45 might offer to their hosts, or that hosts might provide to venom-associated microbes, remaining
- 46 largely unknown. We highlight the potential for the discovery of venom microbiomes within the
- adaptive landscape of venom systems. The considerable number of convergently evolved
  venomous animals, juxtaposed with the comparatively few known studies to identify microbial
- 49 communities in venom, provides new possibilities for both biodiversity and therapeutic
- 50 discoveries. We present an evidence-based argument for integrating microbiology as part of
- 51 venomics (i.e., venom-microbiomics) and introduce iVAMP, the Initiative for Venom Associated
- 52 Microbes and Parasites (<u>https://ivamp-consortium.github.io/</u>), as a growing collaborative
- 53 consortium. We express commitment to the diversity, inclusion and scientific collaboration
- 54 among researchers interested in this emerging subdiscipline through expansion of the iVAMP
- 55 consortium.
- 56

58


60

61 62

57 Keywords: bacteria, coevolution, holobiont, microbiome, symbiont, virus

#### 59 Highlights:

- Venom-microbiome studies as an integrative field of venomics and microbiology
- Argument for multi-omics-based discovery through a microenvironment framework
- Introduction of a venom-microbiome research consortium (iVAMP)



#### 64

#### 65 Text

While scientific research in toxinology and microbiology has persisted for centuries, a cursory 66 search of the literature reveals less than 150 studies overlap between these two fields despite 67 each significantly advancing as a result of next generation sequencing technology (Figure 1, 68 69 Supplemental Table 1, Supplemental Code). The integration of genomics (Moran and Gurevitz, 2006), transcriptomics (Pahari et al., 2007), and proteomics (Fry, 2005) into the study of venom 70 71 has contributed to new toxin discovery and associated biological activity (Oldrati et al., 2016; Calvete, 2017). Over the past 15 years, microbiome research has yielded breakthroughs in our 72 73 knowledge of unculturable microbial "dark matter" (Bernard et al., 2018), the origins of life (Spang et al., 2017), and human health (Arnold et al., 2016; Clavel et al., 2016). Providing 74 ecological and evolutionary context has enhanced both microbiology (Boughner and Singh, 75 2016; Hird, 2017) and venomics (Prashanth et al., 2016; Sunagar et al., 2016; Calvete, 2017). We 76 77 thus propose viewing venom as a microenvironment that occupies a unique niche in which 78 microbes may adapt as a critical perspective for investigating the dynamics of venom-microbe

79 interactions.

80 Researchers in the fields of both venomics and microbiology share common interests in natural products (Katz and Baltz, 2016; Robinson et al., 2017) and adaptive evolution (Phuong et 81 al., 2016; Hird, 2017). With more information on the presence and diversity of venom-associated 82 83 microbiomes (Table 1), future research efforts can focus on how microbes colonize and thrive in venom glands as a starting point for integrating these fields (McFall-Ngai, 2014; Nunes-Alves, 84 2015). For example, examining the biology of the host using microscopy (Schlafer and Meyer, 85 2017) and biomechanics (Yevick and Martin, 2018) could result in translated predictive models 86 (Biggs et al., 2015) for identifying the underlying mechanisms of toxin and metabolite function 87 88 (Sapp, 2016; Adnani et al., 2017). Determining if and which venom microenvironments are truly sterile, and if microbes contribute to shaping the genetic architecture of the venom gland, will 89 90 prove critical in our understanding of venom evolution (Conlin et al., 2014) and antimicrobial 91 resistance (Adnani et al., 2017). Correlating microbial community profiles with functional characteristics of venom could provide yet another layer to the venomics field that would deepen 92 our insight on the mechanisms driving venom variation. Identifying microbial species that have 93 adapted to these seemingly extreme environments (Rampelotto, 2013) will open new avenues of 94 95 research, and emphasizes the need for phylogenetically representative venom host model systems 96 to be bred axenically in vivo to allow researchers to test the functional roles of venom-associated 97 microbes observed in the wild (Figure 2).

98 The host-microbe interactions that naturally occur in the venom microenvironment
99 remain largely unknown, and addressing this knowledge gap through directed microbiome
100 sequencing experiments within a wildtype ecosystem framework will strengthen our
101 understanding of animal associated microbes (McFall-Ngai et al., 2013). A variety of microbial
102 studies have found tetrodotoxin-producing bacteria in venomous and poisonous animals (Hwang

et al., 1989; Cheng et al., 1995; Pratheepa and Vasconcelos, 2013; Stokes et al., 2014) as well as

a number of viruses with RNA genomes residing in venom (Debat, 2017). These studies contrast
 with the notion of the venom microenvironment as largely sterile in that the primary research on

venom-gland derived toxin compounds focuses on antimicrobial properties (Figure 1). However,

107 (1) compounds derived from or contained within venom that demonstrate antimicrobial activity

108 against clinical and/or reference strains (Almeida et al., 2018) may not reflect what occurs

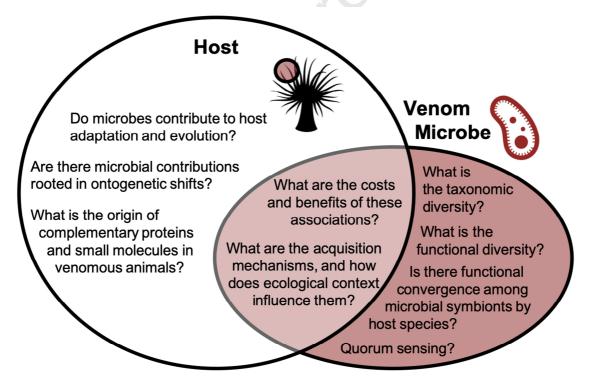
against wild-type strains that co-evolved within venom glands (Reis et al., 2018), and (2)

110 cultured microbes can produce compounds in a lab setting that they may not produce in nature (McCoy and Clapper, 1979; Simmons et al., 2008; Peraud et al., 2009; Catalán et al., 111 112 2010;Quezada et al., 2017b, 2017a, 2017b; Silvestre et al., 2005; Yu et al., 2011). The captive environment, which is already known to affect the host venom profile (Willemse et al., 1979; 113 Freitas-de-Sousa et al., 2015), may also influence microbial composition of the oral and venom 114 115 microbiomes (Hyde et al., 2016), which has led to a call for microbiome studies to utilize wildcollected samples (Colston & Jackson, 2016; Hird, 2017). Studying the venom microbiome, and 116 117 considering the adaptive traits of microbes under selection in an ecological context as it occurs in the wild, clarifies the evolutionary pressures for these antimicrobial compounds found in venom 118 119 (Figure 2). In vitro, in vivo, and natural venom microbiome experiments alongside culture-120 dependent and -independent techniques contribute to our understanding of mutual symbioses, with room for predictive modeling to identify novel niches for microbial adaptation and 121 122 competition (Bull et al., 2010; Zhu et al., 2018). An initial search shows approximately 100 papers per year have consistently been 123 124 published on venom antimicrobial peptides (PubMed search term - antimicrobial AND peptide AND venom 14th Mar 2019) for the past 5 years. The few venom-microbiome studies in the 125 literature to date (Table 1) indicate a clear need for an expansion of the subdiscipline of venom-126 microbiome research, and this has led to the formation of an international, collaborative cohort of 127 128 researchers referred to as the Initiative for Venom Associated Microbes and Parasites (or 129 iVAMP, https://ivamp-consortium.github.io/). A major goal of the iVAMP consortium is to provide a platform for the scientific community to openly discuss areas of interest to the field. 130 Figure 2 outlines some examples of ongoing questions that may be of interest to iVAMP 131 researchers. By emphasizing representation through practice, this consortium supports working 132 with and for communities from which we sample rather than taking from them. Involving 133

scientists across the globe through initiatives like iVAMP extends beyond the requirements of
legislation, such as the Nagoya Protocol (Buck and Hamilton, 2011), to ensure that science is
accessible to the public and inclusive of all parties involved. Overall, the approach taken by this
initiative expands suggested practices (Weber et al., 2001; Cheng et al., 2018) for the benefit of
scientific innovation and discovery.

As an organization, iVAMP has explicit goals and approaches for furthering the fields of 139 microbiome research and venomics (Figure. 2) as well as specific aims for conducting ethical, 140 inclusive, reproducible science. In doing so, our practices seek to prevent counterproductive 141 competition and instead embrace interdisciplinary, collaborative scientific research. The broad 142 scientific disciplines covered by iVAMP members provide a network that allows researchers 143 access to a variety of technical platforms and key resources that otherwise may not be available 144 in individual labs. This is especially important for those researchers who may want to enter the 145 venomics field, but lack accessibility to the necessary resources or instrumentation. Expansion of 146 147 knowledge on microbes living in the many diverse venom host microenvironments additionally contributes to currently absent aspects of holobiont and coevolutionary theory (Faure Denis et 148 al., 2018). Through iVAMP, researchers set an open-access tone for the subdiscipline of venom-149 150 microbiomics that will be useful well into the future.

151




#### 154 Figure 1. Word clouds representative of Supplemental Table 1 content.

155 A breakdown of 140 resultant articles from searching Web of Science for venom-microbe

156 studies. (a) Most articles are either bacteria- or virus- specific, and a subset (16 articles) are not

- related to studies involving microbes. After removing these articles, investigation of the
- remaining 126 show (b) approximately 71% focus on venom toxins exhibiting antimicrobial
- 159 properties with only about 11% focused on venom-microbe interactions. (c) Roughly 57% of the
- 160 surveyed studies focus on snake venom, and the remaining studies are largely from arthropods.
- 161



- 162
- 163 Figure 2. Proposed questions for venom-microbiome exploration of the ecology and
- 164 evolution of venomous hosts and their microbial associates.
- 165 A Venn diagram displaying the intersections of microbiology and venomics through an ecology
- and evolution focus. The questions presented are examples of possible areas of investigation to
- advance the field.

| PUBLISHED STUDIES                  | ORGANISM                                        | TISSUE                                                                             | WILD /<br>Captive  | APPROACH                                      |
|------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------|--------------------|-----------------------------------------------|
| WEBB B.A., SUMMERS<br>M.D. 1990    | Wasp                                            | Venom gland                                                                        | Captive            | Culture, Sanger<br>Sequencing                 |
| PERAUD ET AL. 2009                 | Cone-snail (3 species)                          | Body,<br>Hepatopancreas,<br>Venom Duct                                             | Wild               | Culture, FISH,<br>Sanger<br>Sequencing        |
| GOLDSTEIN ET AL.<br>2013           | Monitor Lizard                                  | Saliva, Gingiva                                                                    | Captive            | Culture, Sanger<br>Sequencing,<br>16S         |
| SIMMONDS ET AL. 2016               | Parasitoid<br>Wasp                              | Venom Gland                                                                        | Wild               | RNAseq/reverse transcriptomics                |
| <b>D</b> EBAT <b>2017</b>          | Spiders                                         | Transcriptomes of<br>the Body,<br>Brain, Silk Gland<br>Venom Gland                 | Wild               | Data-mining<br>(NGS)                          |
| TORRES ET AL. 2017                 | Cone-snail (8<br>species)                       | Venom Duct,<br>Muscle,<br>External Duct                                            | Wild               | 16S, 454                                      |
| ESMAEILISHIRAZIFARD<br>ET AL. 2018 | Snakes (5<br>species)<br>Spiders (2<br>species) | Venom, Oral<br>Cavity                                                              | Wild,<br>Captive   | Culture, 16S,<br>WGS                          |
| IVAMP PROJECTS IN                  |                                                 |                                                                                    | WILD /             |                                               |
| PROGRESS                           | ORGANISM                                        | TISSUE                                                                             | CAPTIVE            | APPROACH                                      |
| Colston                            | Snakes<br>(multiple)                            | Venom, Venom<br>Glands, Venom<br>Ducts, Oral<br>Cavity, Muscle,<br>Stomach and GIT | Wild,<br>Captive   | 16S, RNAseq<br>transcriptomics,<br>Proteomics |
| HARMS + MACRANDER                  | Lionfish:<br>Pterois<br>volitans                | venom glands,<br>venom                                                             | Wild<br>(Invasive) | Transcriptomics,<br>Proteomics                |
| KEISER + COLSTON                   | Spiders:<br>Stegodyphus                         | venom glands,<br>venom                                                             | Wild,<br>Captive   | 16S, RNAseq<br>transcriptomics,<br>Proteomics |
| STIERS, COLSTON                    | Snake:<br>Crotalus<br>scutulatus                | Venom, Venom<br>Glands, Venom<br>Ducts, Oral<br>Cavity, Muscle,<br>Stomach and GIT | Wild,<br>Captive   | 16S, RNAseq<br>transcriptomics,<br>Proteomics |
| UL-HASAN, NOBILE,<br>Petras        | Cone-snail:<br>Californiconus                   | Venom, Venom<br>Duct,                                                              | Wild,<br>Captive   | 16S and 18S,<br>Proteomics,                   |

#### Journal Pre-proof

californicus

Hepatopancreas, Shell, Egg Metabolomics

**Table 1. Explicit Sequencing and Next-Generation venom microbiome studies, including published & in progress work within iVAMP** ( "+" **denotes a collaboration formed because of access to the iVAMP network**). Next-generation venom microbiome studies are comparatively recent, and few in number. Even so, the diversity of these host and microbial community studies highlight the potential benefits of integrating microbiology and venomics (Webb and Summers, 1990; Peraud et al., 2009; Goldstein et al., 2013; Debat, 2017; Torres et al., 2017; Esmaeilishirazifard et al., 2018).

Journal Pre-proof

#### Acknowledgements

We thank the conference organizers of Evolution, the Gordon Research Conference, and the Society for Integrative and Comparative Biology for contributing to environments conducive to a major source of these collaborations. We also thank the Toxicon editor-in-chief, Prof. Glenn King, for encouraging this contribution and the two anonymous reviewers for helpful suggestions that improved this manuscript.

#### Funding

We acknowledge support from the affiliated institutions of the authors.

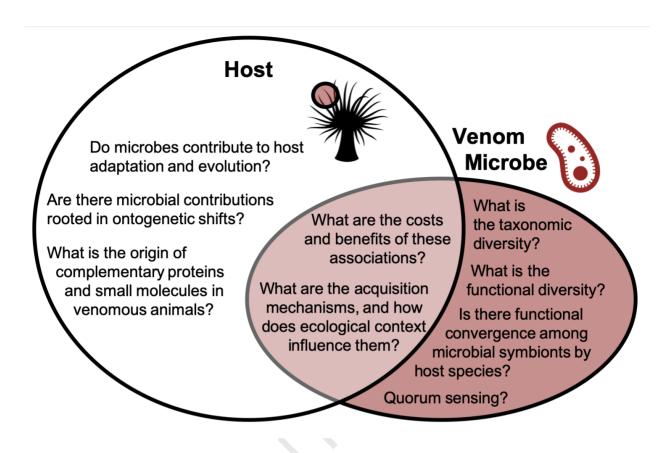
#### **Conflicts of interest**

The authors declare no conflicts of interest.

#### References

- Adnani, N., Rajski, S.R., Bugni, T.S., 2017. Symbiosis-inspired approaches to antibiotic discovery. Nat. Prod. Rep. 34, 784–814.
- Almeida, J.R., Mendes, B., Lancellotti, M., Marangoni, S., Vale, N., Passos, Ó., Ramos, M.J., Fernandes, P.A., Gomes, P., Da Silva, S.L., 2018. A novel synthetic peptide inspired on Lys49 phospholipase A2 from *Crotalus oreganus abyssus* snake venom active against multidrug-resistant clinical isolates. Eur. J. Med. Chem. 149, 248–256.
- Arnold, J.W., Roach, J., Azcarate-Peril, M.A., 2016. Emerging technologies for gut microbiome research. Trends Microbiol. 24, 887–901.
- Bernard, G., Pathmanathan, J.S., Lannes, R., Lopez, P., Bapteste, E., 2018. Microbial dark matter investigations: How microbial studies transform biological knowledge and empirically sketch a logic of scientific discovery. Genome Biol. Evol. 10, 707–715.
- Biggs, M.B., Medlock, G.L., Kolling, G.L., Papin, J.A., 2015. Metabolic network modeling of microbial communities. WIREs Syst. Biol. Med. 7, 317–334.

Boughner, L.A., Singh, P., 2016. Microbial Ecology: Where are we now? Postdoc J. 4, 3–17.


- Buck, M., Hamilton, C., 2011. The Nagoya Protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. RECIEL 20, 47–61.
- Bull, J.J., Jessop, T.S., Whiteley, M., 2010. Deathly drool: Evolutionary and ecological basis of septic bacteria in Komodo Dragon mouths. PLoS ONE 5, e11097.
- Calvete, J.J., 2017. Venomics: integrative venom proteomics and beyond. Biochem. J. 474, 611–634.
- Catalán, A., Espoz, M.C., Cortés, W., Sagua, H., González, J., Araya, J.E., 2010. Tetracycline and penicillin resistant *Clostridium perfringens* isolated from the fangs and venom glands of *Loxosceles laeta*: its implications in loxoscelism treatment. Toxicon 56, 890–896.
- Cheng, C.A., Hwang, D.F., Tsai, Y.H., Chen, H.C., Jeng, S.S., Noguchi, T., Ohwada, K., Hasimoto, K., 1995. Microflora and tetrodotoxin-producing bacteria in a gastropod, *Niotha clathrata*. Food Chem. Toxicol. 33, 929–934.
- Cheng, H., Dove, N.C., Mena, J.M., Perez, T., Ul-Hasan, S., 2018. The Biota Project: A case study of a multimedia, grassroots approach to scientific communication for engaging diverse audiences. Integr. Comp. Biol. 58, 1294–1303.

- Choi, B.C.K., Pang, T., Lin, V., Puska, P., Sherman, G., Goddard, M., Ackland, M.J., Sainsbury, P., Stachenkilo, S., Morrison, H., Clottey, C., 2005. Can scientists and policy makers work together? J. Epidemiol. Community Health 59, 632–637.
- Clavel, T., Lagkouvardos, I., Hiergeist, A., 2016. Microbiome sequencing: challenges and opportunities for molecular medicine. Expert Rev. Mol. Diagn. 16, 795–805.
- Colston, T.J., Jackson, C.R., 2016. Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol. Ecol. 25, 3776–3800.
- Conlin, P.L., Chandler, J.R., Kerr, B., 2014. Games of life and death: antibiotic resistance and production through the lens of evolutionary game theory. Curr. Opin. Microbiol., Antimicrobials 21, 35–44.
- Debat, H.J., 2017. An RNA virome associated to the golden orb-weaver spider *Nephila clavipes*. Front. Microbiol. 8, 2097.
- Dietz, T., 2013. Bringing values and deliberation to science communication. Proc. Natl. Acad. Sci. U.S.A. 110, 14081–14087.
- Esmaeilishirazifard, E., Usher, L., Trim, C., Denise, H., Sangal, V., Tyson, G.H., Barlow, A., Redway, K., Taylor, J.D., Kremmyda-Vlachou, M., Loftus, T.D., Lock, M.M.G., Wright, K., Dalby, A., Snyder, L.A.S., Wuster, W., Trim, S., Moschos, S.A., 2018. Microbial adaptation to venom is common in snakes and spiders. bioRxiv 348433.
- Faure Denis, Simon Jean Christophe, Heulin Thierry, 2018. Holobiont: a conceptual framework to explore the eco evolutionary and functional implications of host-microbiota interactions in all ecosystems. New Phytol. 218, 1321–1324.
- Freitas-de-Sousa, L.A., Amazonas, D.R., Sousa, L.F., Sant'Anna, S.S., Nishiyama, M.Y., Serrano, S.M.T., Junqueira-de-Azevedo, I.L.M., Chalkidis, H.M., Moura-da-Silva, A.M., Mourão, R.H.V., 2015. Comparison of venoms from wild and long-term captive *Bothrops atrox* snakes and characterization of Batroxrhagin, the predominant class PIII metalloproteinase from the venom of this species. Biochimie 118, 60–70.
- Fry, B.G., 2005. From genome to "venome": molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420.
- Goldstein, E.J.C., Tyrrell, K.L., Citron, D.M., Cox, C.R., Recchio, I.M., Okimoto, B., Bryja, J., Fry, B.G., 2013. Anaerobic and aerobic bacteriology of the saliva and gingiva from 16 captive komodo dragons (*Varanus komodoensis*): new implications for the "bacteria as venom" model. J. Zoo Wildl. Med. 44, 262–272.
- Hird, S.M., 2017. Evolutionary biology needs wild microbiomes. Front. Microbiol. 8, 725.
- Hwang, D.F., Arakawa, O., Saito, T., Noguchi, T., Simidu, U., Tsukamoto, K., Shida, Y., Hashimoto, K., 1989. Tetrodotoxin-producing bacteria from the blue-ringed octopus *Octopus maculosus*. Mar. Biol. 100, 327–332.
- Hyde, E.R., Navas-Molina, J.A., Song, S.J., Kueneman, J.G., Ackermann, G., Cardona, C., Humphrey, G., Boyer, D., Weaver, T., Mendelson, J.R., McKenzie, V.J., Gilbert, J.A., Knight, R., 2016. The oral and skin microbiomes of captive komodo dragons are significantly shared with their habitat. mSystems 1, e00046-16.
- Katz, L., Baltz, R.H., 2016. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176.
- McCoy, R.H., Clapper, D.R., 1979. The oral flora of the South Texas tarantula, *Dugesiella anax* (araneae: Theraphosidae). J. Med. Entomol. 16, 450–451.

- McFall-Ngai, M., Hadfield, M.G., Bosch, T.C.G., Carey, H.V., Domazet-Lošo, T., Douglas, A.E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S.F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A.H., Kremer, N., Mazmanian, S.K., Metcalf, J.L., Nealson, K., Pierce, N.E., Rawls, J.F., Reid, A., Ruby, E.G., Rumpho, M., Sanders, J.G., Tautz, D., Wernegreen, J.J., 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. U.S.A. 110, 3229–3236.
- McFall-Ngai, M.J., 2014. The importance of microbes in animal development: Lessons from the squid-vibrio symbiosis. Ann. Rev. Microbiol. 68, 177–194.
- Moran, Y., Gurevitz, M., 2006. When positive selection of neurotoxin genes is missing. The riddle of the sea anemone *Nematostella vectensis*. FEBS J. 273, 3886–3892.
- Nunes-Alves, C., 2015. Vibrio genes involved in squid colonization. Nat. Rev. Microbiol. 13, 3.
- Oldrati, V., Arrell, M., Violette, A., Perret, F., Sprüngli, X., Wolfender, J.-L., Stöcklin, R., 2016. Advances in venomics. Mol. BioSyst. 12, 3530–3543.
- Pahari, S., Mackessy, S.P., Kini, R.M., 2007. The venom gland transcriptome of the Desert Massasauga Rattlesnake (*Sistrurus catenatus edwardsii*): towards an understanding of venom composition among advanced snakes (Superfamily Colubroidea). BMC Mol. Biol. 8, 115.
- Peraud, O., Biggs, J.S., Hughen, R.W., Light, A.R., Concepcion, G.P., Olivera, B.M., Schmidt, E.W., 2009. Microhabitats within venomous cone snails contain diverse actinobacteria. Appl. Environ. Microbiol. 75, 6820–6826.
- Phuong, M.A., Mahardika, G.N., Alfaro, M.E., 2016. Dietary breadth is positively correlated with venom complexity in cone snails. BMC Genomics 17, 401.
- Prashanth, J.R., Dutertre, S., Jin, A.H., Lavergne, V., Hamilton, B., Cardoso, F.C., Griffin, J., Venter, D.J., Alewood, P.F., Lewis, R.J., 2016. The role of defensive ecological interactions in the evolution of conotoxins. Mol. Ecol. 25, 598–615.
- Pratheepa, V., Vasconcelos, V., 2013. Microbial diversity associated with tetrodotoxin production in marine organisms. Environ. Toxicol. Pharmacol. 36, 1046–1054.
- Quezada, M., Licona-Cassani, C., Cruz-Morales, P., Salim, A.A., Marcellin, E., Capon, R.J., Barona-Gómez, F., 2017a. Diverse cone-snail species harbor closely related *Streptomyces* species with conserved chemical and genetic profiles, including polycyclic tetramic acid macrolactams. Front. Microbiol. 8, 2305.
- Quezada, M., Shang, Z., Kalansuriya, P., Salim, A.A., Lacey, E., Capon, R.J., 2017b. Waspergillamide A, a nitro depsi-tetrapeptide diketopiperazine from an Australian mud dauber wasp-associated *Aspergillus* sp. (CMB-W031). J. Nat. Prod. 80, 1192–1195.
- Rampelotto, P.H., 2013. Extremophiles and extreme environments. Life 3, 482–485.
- Reis, P.V.M., Boff, D., Verly, R.M., Melo-Braga, M.N., Cortés, M.E., Santos, D.M., Pimenta, A.M. de C., Amaral, F.A., Resende, J.M., de Lima, M.E., 2018. LyeTxI-b, a synthetic peptide derived from *Lycosa erythrognatha* spider venom, shows potent antibiotic activity *in vitro* and *in vivo*. Front. Microbiol. 9, 667.
- Robinson, S.D., Undheim, E.A.B., Ueberheide, B., King, G.F., 2017. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteom. 14, 931–939.
- Sapp, J., 2016. The symbiotic self. Evol. Biol. 43, 596-603.
- Schlafer, S., Meyer, R.L., 2017. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Meth. 138, 50-59.
- Silvestre, F.G., Castro, C.S. de, Moura, J.F. de, Giusta, M.S., Maria, M.D., Álvares, É.S.S., Lobato, F.C.F., Assis, R.A., Gonçalves, L.A., Gubert, I.C., Chávez-Olórtegui, C.,

Kalapothakis, E., 2005. Characterization of the venom from the Brazilian brown spider *Loxosceles similis* Moenkhaus, 1898 (Araneae, Sicariidae). Toxicon 46, 927–936.

- Simmons, T.L., Coates, R.C., Clark, B.R., Engene, N., Gonzalez, D., Esquenazi, E., Dorrestein, P.C., Gerwick, W.H., 2008. Biosynthetic origin of natural products isolated from marine microorganism-invertebrate assemblages. Proc. Natl. Acad. Sci. U.S.A. 105, 4587–4594.
- Simmonds, T.J., Carillo, D., Burke, G.R., 2016 Characterization of a venom gland-associated rhabdovirus in the parasitoid wasp *Diachasmimorpha longicaudata*. J. Insect Physiology. 91-92, 48–55.
- Spang, A., Stairs, C.W., Lombard, J., Eme, L., Ettema, T.J.G., 2017. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15., 711-723.
- Stokes, A.N., Ducey, P.K., Neuman-Lee, L., Hanifin, C.T., French, S.S., Pfrender, M.E., Iii,
   E.D.B., Jr, E.D.B., 2014. Confirmation and distribution of tetrodotoxin for the first time in
   terrestrial invertebrates: Two terrestrial flatworm species (*Bipalium adventitium* and *Bipalium kewense*). PLoS ONE 9, e100718.
- Sunagar, K., Morgenstern, D., Reitzel, A.M., Moran, Y., 2016. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom. J. Proteom., Proteomics in Evolutionary Ecology 135, 62–72.
- Torres, J.P., Tianero, M.D., Robes, J.M.D., Kwan, J.C., Biggs, J.S., Concepcion, G.P., Olivera, B.M., Haygood, M.G., Schmidt, E.W., 2017. *Stenotrophomonas*-like bacteria are widespread symbionts in cone snail venom ducts. Appl. Environ. Microbiol. 83, e01418-17.
- Webb, B.A., Summers, M.D., 1990. Venom and viral expression products of the endoparasitic wasp *Campoletis sonorensis* share epitopes and related sequences. Proc. Natl. Acad. Sci. U.S.A. 87, 4961–4965.
- Weber, J.R., Schell Word, C., 2001. The communication process as evaluative context: What do nonscientists hear when scientists speak? BioScience 51, 487–495.
- Willemse, G.T., Hattingh, J., Karlsson, R.M., Levy, S., Parker, C., 1979. Changes in composition and protein concentration of puff adder (*Bitis arietans*) venom due to frequent milking. Toxicon 17, 37–42.
- Yevick, H.G., Martin, A.C., 2018. Quantitative analysis of cell shape and the cytoskeleton in developmental biology. Wiley Interdiscip. Rev. Dev. Biol. 7, e333.
- Yu, V.C.-H., Yu, P.H.-F., Ho, K.-C., Lee, F.W.-F., 2011. Isolation and identification of a new tetrodotoxin-producing bacterial species, *Raoultella terrigena*, from Hong Kong marine puffer fish *Takifugu niphobles*. Mar. Drugs 9, 2384–2396.
- Zhu, F., Cusumano, A., Bloem, J., Weldegergis, B.T., Villela, A., Fatouros, N.E., van Loon, J.J., Dicke, M., Harvey, J.A., Vogel, H., Poelman, E.H., 2018. Symbiotic polydnavirus and venom reveal parasitoid to its hyperparasitoids. Proc. Natl. Acad. Sci. U.S.A. 115, 5205-5210.



#### **Declaration of interests**

 $\boxtimes$  The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Prerk