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Abstract 38 

Venom is a known source of novel antimicrobial natural products. The substantial, increasing 39 

number of these discoveries have unintentionally culminated in the misconception that venom 40 

and venom-producing glands are largely sterile environments. Culture-dependent and -41 

independent studies on the microbial communities in venom microenvironments reveal the 42 

presence of archaea, algae, bacteria, fungi, protozoa, and viruses. Venom-centric microbiome 43 

studies are relatively sparse to date with the adaptive advantages that venom-associated microbes 44 

might offer to their hosts, or that hosts might provide to venom-associated microbes, remaining 45 

largely unknown. We highlight the potential for the discovery of venom microbiomes within the 46 

adaptive landscape of venom systems. The considerable number of convergently evolved 47 

venomous animals, juxtaposed with the comparatively few known studies to identify microbial 48 

communities in venom, provides new possibilities for both biodiversity and therapeutic 49 

discoveries. We present an evidence-based argument for integrating microbiology as part of 50 

venomics (i.e., venom-microbiomics) and introduce iVAMP, the Initiative for Venom Associated 51 

Microbes and Parasites (https://ivamp-consortium.github.io/), as a growing collaborative 52 

consortium. We express commitment to the diversity, inclusion and scientific collaboration 53 

among researchers interested in this emerging subdiscipline through expansion of the iVAMP 54 

consortium.  55 

 56 

Keywords: bacteria, coevolution, holobiont, microbiome, symbiont, virus 57 

 58 

Highlights:  59 

● Venom-microbiome studies as an integrative field of venomics and microbiology 60 

● Argument for multi-omics-based discovery through a microenvironment framework  61 

● Introduction of a venom-microbiome research consortium (iVAMP) 62 

 63 
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 64 

Text 65 

While scientific research in toxinology and microbiology has persisted for centuries, a cursory 66 

search of the literature reveals less than 150 studies overlap between these two fields despite 67 

each significantly advancing as a result of next generation sequencing technology (Figure 1, 68 

Supplemental Table 1, Supplemental Code). The integration of genomics (Moran and Gurevitz, 69 

2006), transcriptomics (Pahari et al., 2007), and proteomics (Fry, 2005) into the study of venom 70 

has contributed to new toxin discovery and associated biological activity (Oldrati et al., 2016; 71 

Calvete, 2017). Over the past 15 years, microbiome research has yielded breakthroughs in our 72 

knowledge of unculturable microbial “dark matter” (Bernard et al., 2018), the origins of life 73 

(Spang et al., 2017), and human health (Arnold et al., 2016; Clavel et al., 2016). Providing 74 

ecological and evolutionary context has enhanced both microbiology (Boughner and Singh, 75 

2016; Hird, 2017) and venomics (Prashanth et al., 2016; Sunagar et al., 2016; Calvete, 2017). We 76 

thus propose viewing venom as a microenvironment that occupies a unique niche in which 77 

microbes may adapt as a critical perspective for investigating the dynamics of venom-microbe 78 

interactions.  79 

         Researchers in the fields of both venomics and microbiology share common interests in 80 

natural products (Katz and Baltz, 2016; Robinson et al., 2017) and adaptive evolution (Phuong et 81 

al., 2016; Hird, 2017). With more information on the presence and diversity of venom-associated 82 

microbiomes (Table 1), future research efforts can focus on how microbes colonize and thrive in 83 

venom glands as a starting point for integrating these fields (McFall-Ngai, 2014; Nunes-Alves, 84 

2015). For example, examining the biology of the host using microscopy (Schlafer and Meyer, 85 

2017) and biomechanics (Yevick and Martin, 2018) could result in translated predictive models 86 

(Biggs et al., 2015) for identifying the underlying mechanisms of toxin and metabolite function 87 

(Sapp, 2016; Adnani et al., 2017). Determining if and which venom microenvironments are truly 88 

sterile, and if microbes contribute to shaping the genetic architecture of the venom gland, will 89 

prove critical in our understanding of venom evolution (Conlin et al., 2014) and antimicrobial 90 

resistance (Adnani et al., 2017). Correlating microbial community profiles with functional 91 

characteristics of venom could provide yet another layer to the venomics field that would deepen 92 

our insight on the mechanisms driving venom variation. Identifying microbial species that have 93 

adapted to these seemingly extreme environments (Rampelotto, 2013) will open new avenues of 94 

research, and emphasizes the need for phylogenetically representative venom host model systems 95 

to be bred axenically in vivo to allow researchers to test the functional roles of venom-associated 96 

microbes observed in the wild (Figure 2). 97 

The host-microbe interactions that naturally occur in the venom microenvironment 98 

remain largely unknown, and addressing this knowledge gap through directed microbiome 99 

sequencing experiments within a wildtype ecosystem framework will strengthen our 100 

understanding of animal associated microbes (McFall-Ngai et al., 2013). A variety of microbial 101 

studies have found tetrodotoxin-producing bacteria in venomous and poisonous animals (Hwang 102 

et al., 1989; Cheng et al., 1995; Pratheepa and Vasconcelos, 2013; Stokes et al., 2014) as well as 103 

a number of viruses with RNA genomes residing in venom (Debat, 2017). These studies contrast 104 

with the notion of the venom microenvironment as largely sterile in that the primary research on 105 

venom-gland derived toxin compounds focuses on antimicrobial properties (Figure 1). However, 106 

(1) compounds derived from or contained within venom that demonstrate antimicrobial activity 107 

against clinical and/or reference strains (Almeida et al., 2018) may not reflect what occurs 108 

against wild-type strains that co-evolved within venom glands (Reis et al., 2018), and (2) 109 
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cultured microbes can produce compounds in a lab setting that they may not produce in nature 110 

(McCoy and Clapper, 1979; Simmons et al., 2008; Peraud et al., 2009; Catalán et al., 111 

2010;Quezada et al., 2017b, 2017a, 2017b; Silvestre et al., 2005; Yu et al., 2011). The captive 112 

environment, which is already known to affect the host venom profile (Willemse et al., 1979; 113 

Freitas-de-Sousa et al., 2015), may also influence microbial composition of the oral and venom 114 

microbiomes (Hyde et al., 2016), which has led to a call for microbiome studies to utilize wild-115 

collected samples (Colston & Jackson, 2016; Hird, 2017). Studying the venom microbiome, and 116 

considering the adaptive traits of microbes under selection in an ecological context as it occurs in 117 

the wild, clarifies the evolutionary pressures for these antimicrobial compounds found in venom 118 

(Figure 2). In vitro, in vivo, and natural venom microbiome experiments alongside culture-119 

dependent and -independent techniques contribute to our understanding of mutual symbioses, 120 

with room for predictive modeling to identify novel niches for microbial adaptation and 121 

competition (Bull et al., 2010; Zhu et al., 2018).  122 

An initial search shows approximately 100 papers per year have consistently been 123 

published on venom antimicrobial peptides (PubMed search term - antimicrobial AND peptide 124 

AND venom 14th Mar 2019) for the past 5 years. The few venom-microbiome studies in the 125 

literature to date (Table 1) indicate a clear need for an expansion of the subdiscipline of venom-126 

microbiome research, and this has led to the formation of an international, collaborative cohort of 127 

researchers referred to as the Initiative for Venom Associated Microbes and Parasites (or 128 

iVAMP, https://ivamp-consortium.github.io/). A major goal of the iVAMP consortium is to 129 

provide a platform for the scientific community to openly discuss areas of interest to the field. 130 

Figure 2 outlines some examples of ongoing questions that may be of interest to iVAMP 131 

researchers. By emphasizing representation through practice, this consortium supports working 132 

with and for communities from which we sample rather than taking from them. Involving 133 

scientists across the globe through initiatives like iVAMP extends beyond the requirements of 134 

legislation, such as the Nagoya Protocol (Buck and Hamilton, 2011), to ensure that science is 135 

accessible to the public and inclusive of all parties involved. Overall, the approach taken by this 136 

initiative expands suggested practices (Weber et al., 2001; Cheng et al., 2018) for the benefit of 137 

scientific innovation and discovery. 138 

As an organization, iVAMP has explicit goals and approaches for furthering the fields of 139 

microbiome research and venomics (Figure. 2) as well as specific aims for conducting ethical, 140 

inclusive, reproducible science. In doing so, our practices seek to prevent counterproductive 141 

competition and instead embrace interdisciplinary, collaborative scientific research. The broad 142 

scientific disciplines covered by iVAMP members provide a network that allows researchers 143 

access to a variety of technical platforms and key resources that otherwise may not be available 144 

in individual labs. This is especially important for those researchers who may want to enter the 145 

venomics field, but lack accessibility to the necessary resources or instrumentation. Expansion of 146 

knowledge on microbes living in the many diverse venom host microenvironments additionally 147 

contributes to currently absent aspects of holobiont and coevolutionary theory (Faure Denis et 148 

al., 2018). Through iVAMP, researchers set an open-access tone for the subdiscipline of venom-149 

microbiomics that will be useful well into the future.  150 

151 
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Figures and Tables 152 

153 

Figure 1. Word clouds representative of Supplemental Table 1 content. 154 

A breakdown of 140 resultant articles from searching Web of Science for venom-microbe 155 

studies. (a) Most articles are either bacteria- or virus- specific, and a subset (16 articles) are not 156 

related to studies involving microbes. After removing these articles, investigation of the 157 

remaining 126 show (b) approximately 71% focus on venom toxins exhibiting antimicrobial 158 

properties with only about 11% focused on venom-microbe interactions. (c) Roughly 57% of the 159 

surveyed studies focus on snake venom, and the remaining studies are largely from arthropods. 160 

 161 

 162 

Figure 2. Proposed questions for venom-microbiome exploration of the ecology and 163 

evolution of venomous hosts and their microbial associates. 164 

A Venn diagram displaying the intersections of microbiology and venomics through an ecology 165 

and evolution focus. The questions presented are examples of possible areas of investigation to 166 

advance the field.  167 
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PUBLISHED STUDIES ORGANISM  T ISSUE WILD / 

CAPTIVE  
APPROACH   

WEBB B.A., SUMMERS 

M.D. 1990 
Wasp Venom gland Captive Culture, Sanger 

Sequencing  
 

PERAUD ET AL . 2009 Cone-snail (3 
species) 

Body, 
Hepatopancreas, 
Venom Duct 

Wild Culture, FISH, 
Sanger 
Sequencing 

 

GOLDSTEIN ET AL . 
2013 

Monitor Lizard Saliva, Gingiva  Captive Culture, Sanger 
Sequencing, 
16S  

 

SIMMONDS ET AL . 2016 Parasitoid 
Wasp 

Venom Gland Wild RNAseq/reverse 
transcriptomics 

 

DEBAT 2017  Spiders Transcriptomes of 
the Body, 
Brain, Silk Gland 
Venom Gland 

Wild Data-mining 
(NGS) 

 

TORRES ET AL. 2017 Cone-snail (8 
species) 

Venom Duct, 
Muscle, 
External Duct  

Wild 16S, 454  
  

ESMAEILISHIRAZIFARD 

ET AL . 2018 
Snakes (5 
species)  
Spiders (2 
species) 

Venom, Oral 
Cavity 

Wild, 
Captive 

Culture, 16S, 
WGS  

 

 
IVAMP  PROJECTS IN 

PROGRESS ORGANISM  T ISSUE 
WILD / 
CAPTIVE  APPROACH 

 

COLSTON Snakes 
(multiple) 

Venom, Venom 
Glands, Venom 
Ducts, Oral 
Cavity, Muscle, 
Stomach and GIT 

Wild, 
Captive 

16S, RNAseq 
transcriptomics,  
Proteomics  

HARMS + MACRANDER  Lionfish: 
Pterois 
volitans 

venom glands, 
venom 

Wild 
(Invasive) 

Transcriptomics, 
Proteomics  

KEISER + COLSTON Spiders: 
Stegodyphus 

venom glands, 
venom 

Wild, 
Captive 

16S, RNAseq 
transcriptomics,  
Proteomics 

 

STIERS, COLSTON Snake: 
Crotalus 
scutulatus 

Venom, Venom 
Glands, Venom 
Ducts, Oral 
Cavity, Muscle, 
Stomach and GIT 

Wild, 
Captive 

16S, RNAseq 
transcriptomics,  
Proteomics  

UL-HASAN, NOBILE , 
PETRAS  

Cone-snail: 
Californiconus 

Venom, Venom 
Duct, 

Wild, 
Captive 

16S and 18S, 
Proteomics,  

 



7 

 

californicus Hepatopancreas, 
Shell, Egg  

Metabolomics 

Table 1. Explicit Sequencing and Next-Generation venom microbiome studies, including 
published & in progress work within iVAMP ( “+” den otes a collaboration formed because of 
access to the iVAMP network). Next-generation venom microbiome studies are comparatively 
recent, and few in number. Even so, the diversity of these host and microbial community studies 
highlight the potential benefits of integrating microbiology and venomics (Webb and Summers, 1990; 
Peraud et al., 2009; Goldstein et al., 2013; Debat, 2017; Torres et al., 2017; Esmaeilishirazifard et al., 
2018).  
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