21 research outputs found
Spring Water of an Alpine Karst Aquifer Is Dominated by a Taxonomically Stable but Discharge-Responsive Bacterial Community
Alpine karst aquifers are important groundwater resources for the provision of drinking water all around the world. Yet, due to difficult accessibility and long-standing methodological limitations, the microbiology of these systems has long been understudied. The aim of the present study was to investigate the structure and dynamics of bacterial communities in spring water of an alpine limestone karst aquifer (LKAS2) under different hydrological conditions (base vs. event flow). The study was based on high-throughput 16S rRNA gene amplicon sequencing, study design and sample selection were guided by hydrology and pollution microbiology data. Spanning more than 27 months, our analyses revealed a taxonomically highly stable bacterial community, comprising high proportions of yet uncultivated bacteria in the suspended bacterial community fraction. Only the three candidate phyla Parcubacteria (OD1), Gracilibacteria (GN02), Doudnabacteria (SM2F11) together with Proteobacteria and Bacteroidetes contributed between 70.0 and 88.4% of total reads throughout the investigation period. A core-community of 300 OTUs consistently contributed between 37.6 and 56.3% of total reads, further supporting the hypothesis of a high temporal stability in the bacterial community in the spring water. Nonetheless, a detectable response in the bacterial community structure of the spring water was discernible during a high-discharge event. Sequence reads affiliated to the class Flavobacteriia clearly increased from a mean proportion of 2.3% during baseflow to a maximum of 12.7% during the early phase of the studied high-discharge event, suggesting direct impacts from changing hydrological conditions on the bacterial community structure in the spring water. This was further supported by an increase in species richness (Chao1) at higher discharge. The combination of these observations allowed the identification and characterization of three different discharge classes (Q1–Q3). In conclusion, we found a taxonomically stable bacterial community prevailing in spring waters from an alpine karst aquifer over the entire study period of more than 2 years. Clear response to changing discharge conditions could be detected for particular bacterial groups, whereas the most responsive group – bacteria affiliated to the class of Flavobacteriia – might harbor potential as a valuable natural indicator of “system disturbances” in karst aquifers
Have genetic targets for faecal pollution diagnostics and source tracking revolutionised water quality analysis yet?
The impacts on faecal pollution analysis using nucleic acid-based methods, such as PCR and sequencing, in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1,100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis. Undoubtedly, GFPD has already revolutionised faecal pollution detection and microbial source tracking, the current core applications. GFPD is also expanding to many other research areas, including infection and health risk assessment, evaluation of microbial water treatment, and support of wastewater surveillance. In addition, storage of DNA extracts allows for biobanking, which opens up new perspectives. The tools of GFPD can be combined with cultivation-based standardised faecal indicator enumeration, pathogen detection, and various environmental data types, in an integrated data analysis approach. This comprehensive meta-analysis provides the scientific status quo of this field, including trend analyses and literature statistics, outlining identified application areas, and discussing the benefits and challenges of nucleic acid-based analysis in GFPD
Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents
Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4»400»000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log10 7.2-8.0 marker equivalents (ME) 100 mL-1) and biologically treated wastewater samples (median log10 4.6-6.0 ME 100 mL-1) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.Fil: Mayer, RenĂ© E.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Reischer, Georg. Vienna University of Technology; AustriaFil: Ixenmaier, Simone K.. Vienna University of Technology; Austria. Interuniversity Cooperation Centre for Water and Health; AustriaFil: Derx, Julia. Vienna University of Technology; AustriaFil: Blaschke, Alfred Paul. Vienna University of Technology; AustriaFil: Ebdon, James E.. University of Brighton; Reino UnidoFil: Linke, Rita. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; AustriaFil: Egle, Lukas. Vienna University of Technology; AustriaFil: Ahmed, Warish. Csiro Land And Water; AustraliaFil: Blanch, Anicet R.. Universidad de Barcelona; EspañaFil: Byamukama, Denis. Makerere University; UgandaFil: Savill, Marion. Affordable Water Limited;Fil: Mushi, Douglas. Sokoine University Of Agriculture; TanzaniaFil: Cristobal, Hector Antonio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Salta. Instituto de Investigaciones para la Industria QuĂmica. Universidad Nacional de Salta. Facultad de IngenierĂa. Instituto de Investigaciones para la Industria QuĂmica; ArgentinaFil: Edge, Thomas A.. Canada Centre for Inland Waters. Environment and Climate Change Canada; CanadáFil: Schade, Margit A.. Bavarian Environment Agency; AlemaniaFil: Aslan, Asli. Georgia Southern University; Estados UnidosFil: Brooks, Yolanda M.. Michigan State University; Estados UnidosFil: Sommer, Regina. Interuniversity Cooperation Centre Water And Health; Austria. Medizinische Universitat Wien; AustriaFil: Masago, Yoshifumi. Tohoku University; JapĂłnFil: Sato, Maria I.. Cia. Ambiental do Estado de Sao Paulo. Departamento de Análises Ambientais; BrasilFil: Taylor, Huw D.. University of Brighton; Reino UnidoFil: Rose, Joan B.. Michigan State University; Estados UnidosFil: Wuertz, Stefan. Nanyang Technological University. Singapore Centre for Environmental Life Sciences Engineering and School of Civil and Environmental Engineering; SingapurFil: Shanks, Orin. U.S. Environmental Protection Agency; Estados UnidosFil: Piringer, Harald. Vrvis Research Center; AustriaFil: Mach, Robert L.. Vienna University of Technology; AustriaFil: Savio, Domenico. Karl Landsteiner University of Health Sciences; AustriaFil: Zessner, Matthias. Vienna University of Technology; AustriaFil: Farnleitner, Andreas. Vienna University of Technology; Austria. Interuniversity Cooperation Centre Water And Health; Austria. Karl Landsteiner University of Health Sciences; Austri
Detection of a microbial source tracking marker by isothermal helicase-dependent amplification and a nucleic acid lateral-flow strip test
Abstract Over the last decades, various PCR-based methods have been proposed that can identify sources of faecal pollution in environmental waters. These microbial source tracking (MST) methods are powerful tools to manage water quality and support public health risk assessment. However, their application is limited by the lack of specialized equipment and trained personnel in laboratories performing microbiological water quality assessment. Here, we describe a novel molecular method that combines helicase-dependent amplification (HDA) with a strip test for detecting ruminant faecal pollution sources. Unlike quantitative PCR (qPCR), the developed HDA-strip assay only requires a heating block to amplify the ruminant-associated Bacteroidetes 16S rRNA marker (BacR). Following HDA, the reaction mixture can be directly applied onto the test strip, which detects and displays the amplification products by marker-specific hybridization probes via an on-strip colorimetric reaction. The entire assay takes two hours and demands no extensive practical training. Furthermore, the BacR HDA-strip assay achieved comparable results in head-to-head performance tests with the qPCR reference, in which we investigated source-sensitivity and source-specificity, the analytical limit of detection, and the sample limit of detection. Although this approach only yields qualitative results, it can pave a way for future simple-to-use MST screening tools
High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces
Two frequently applied genetic Bacteroidetes markers for total fecal pollution (AllBac and BacUni) were found in high numbers in pristine soil samples of two alpine catchment areas casting doubt on their value as fecal indicators. This finding underlines the necessity to evaluate assays locally and against non-intestinal samples before application
A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Enterococcus spp. in water
Faecal pollution of water and the resulting potential presence of human enteric pathogens is a predominant threat to public health. Microbiological water quality can be assessed by the detection of standard faecal indicator bacteria (SFIB) such as E. coli or certain Enterococcus species. In recent years, isothermal amplification methods have become a useful alternative to polymerase chain reaction (PCR), allowing molecular diagnostics with simple or no instrumentation. In this study, a novel screening method for the molecular detection of Enterococcus spp. by loop-mediated isothermal amplification (LAMP) is described. A set of six specific LAMP primers was designed to amplify a diagnostic fragment of the Enterococcus 23S rRNA gene, which is present in several enterococcal species targeted by quantitative PCR (qPCR), which is the standard technique recommended by the US Environmental Protection Agency. Sensitivity and specificity tests were performed using a set of 30 Enterococcus and non-target bacterial reference strains. It is shown that LAMP is equally sensitive and even more specific than the qPCR assay. A dilution series of Enterococcus faecalis DNA revealed that the LAMP method can reliably detect 130 DNA target copies per reaction within 45 min. Additionally, enterococci isolated from Austrian surface waterbodies, as well as a set of DNA extracts from environmental waters, were tested. Contingency analysis demonstrated a highly significant correlation between the results of the developed LAMP assay and the reference qPCR method. Furthermore, a simple staining procedure with a fluorescence dye demonstrated the identification of amplified products by eye. In conclusion, this method is an important component for the efficient screening and testing of water samples in low-resource settings lacking sophisticated laboratory equipment and highly trained personnel, requiring only a simple heating block