1,437 research outputs found

    Modelling the molecular Zeeman effect in M-dwarfs: methods and first results

    Full text link
    We present first quantitative results of the surface magnetic field measurements in selected M-dwarfs based on detailed spectra synthesis conducted simultaneously in atomic and molecular lines of the FeH Wing-Ford F4 Δ−X4 ΔF^4\,\Delta-X^4\,\Delta transitions. A modified version of the Molecular Zeeman Library (MZL) was used to compute Land\'e g-factors for FeH lines in different Hund's cases. Magnetic spectra synthesis was performed with the Synmast code. We show that the implementation of different Hund's case for FeH states depending on their quantum numbers allows us to achieve a good fit to the majority of lines in a sunspot spectrum in an automatic regime. Strong magnetic fields are confirmed via the modelling of atomic and FeH lines for three M-dwarfs YZ~CMi, EV~Lac, and AD~Leo, but their mean intensities are found to be systematically lower than previously reported. A much weaker field (1.7−21.7-2~kG against 2.72.7~kG) is required to fit FeH lines in the spectra of GJ~1224. Our method allows us to measure average magnetic fields in very low-mass stars from polarized radiative transfer. The obtained results indicate that the fields reported in earlier works were probably overestimated by about 15−3015-30\%. Higher quality observations are needed for more definite results.Comment: Accepted by A&A, 13 pages, 7 figures, 1 tabl

    Discovery of a nearby young brown dwarf binary candidate

    Full text link
    In near-infrared NaCo observations of the young brown dwarf 2MASS J0041353-562112, we discovered a companion a little less than a magnitude fainter than the primary. The binary candidate has a separation of 143 mas, the spectral types are M6.5 and M9.0 for the two components. Colors and flux ratios are consistent with the components being located at the same distance minimizing the probability of the secondary being a background object. The brown dwarf is known to show Li absorption constraining the age to less than ~200 Myr, and it was suspected to show ongoing accretion, indicating an age as low as ~10 Myr. We estimate distance and orbital parameters of the binary as a function of age. For an age of 10 Myr, the distance to the system is 50 pc, the orbital period is 126 yr, and the masses of the components are ~30 and ~15 MJup. The binary brown dwarf fills a so far unoccupied region in the parameters mass and age; it is a valuable new benchmark object for brown dwarf atmospheric and evolutionary models.Comment: 4 pages, 2 figures, accepted by A&

    Investigation of transit-selected exoplanet candidates from the MACHO survey

    Full text link
    Context: Planets outside our solar system transiting their host star, i. e. those with an orbital inclination near 90 degree, are of special interest to derive physical properties of extrasolar planets. With the knowledge of the host star's physical parameters, the planetary radius can be determined. Combined with spectroscopic observations the mass and therefore the density can be derived from Doppler-measurements. Depending on the brightness of the host star, additional information, e. g. about the spin-orbit alignment between the host star and planetary orbit, can be obtained. Aims: The last few years have witnessed a growing success of transit surveys. Among other surveys, the MACHO project provided nine potential transiting planets, several of them with relatively bright parent stars. The photometric signature of a transit event is, however, insufficient to confirm the planetary nature of the faint companion. The aim of this paper therefore is a determination of the spectroscopic parameters of the host stars as well as a dynamical mass determination through Doppler-measurements. Methods: We have obtained follow-up high-resolution spectra for five stars selected from the MACHO sample, which are consistent with transits of low-luminosity objects. Radial velocities have been determined by means of cross-correlation with model spectra. The MACHO light curves have been compared to simulations based on the physical parameters of the system derived from the radial velocities and spectral analyses. Aims: We show that all transit light curves of the exoplanet candidates analysed in this work can be explained by eclipses of stellar objects, hence none of the five transiting objects is a planet.Comment: 6 pages, 3 figures, 1 table, accepted for publication in A&

    3D simulations of M star atmosphere velocities and their influence on molecular FeH lines

    Full text link
    We present an investigation of the velocity fields in early to late M-type star hydrodynamic models, and we simulate their influence on FeH molecular line shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K and 4000 K. Our aim is to characterize the Teff- and log g -dependence of the velocity fields and express them in terms of micro- and macro-turbulent velocities in the one dimensional sense. We present also a direct comparison between 3D hydrodynamical velocity fields and 1D turbulent velocities. The velocity fields strongly affect the line shapes of FeH, and it is our goal to give a rough estimate for the log g and Teff parameter range in which 3D spectral synthesis is necessary and where 1D synthesis suffices. In order to calculate M-star structure models we employ the 3D radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these models is performed with the line synthesis code LINFOR3D. We describe the 3D velocity fields in terms of a Gaussian standard deviation and project them onto the line of sight to include geometrical and limb-darkening effects. The micro- and macro-turbulent velocities are determined with the "Curve of Growth" method and convolution with a Gaussian velocity profile, respectively. To characterize the log g and Teff dependence of FeH lines, the equivalent width, line width, and line depth are regarded. The velocity fields in M-stars strongly depend on log g and Teff. They become stronger with decreasing log g and increasing Teff.Comment: 14 pages, 17 figures, 3 tables, accepted by Astronomy & Astrophysic

    Detecting Planets Around Very Low Mass Stars with the Radial Velocity Method

    Full text link
    The detection of planets around very low-mass stars with the radial velocity method is hampered by the fact that these stars are very faint at optical wavelengths where the most high-precision spectrometers operate. We investigate the precision that can be achieved in radial velocity measurements of low mass stars in the near infrared (nIR) Y-, J-, and H-bands, and we compare it to the precision achievable in the optical. For early-M stars, radial velocity measurements in the nIR offer no or only marginal advantage in comparison to optical measurements. Although they emit more flux in the nIR, the richness of spectral features in the optical outweighs the flux difference. We find that nIR measurement can be as precise than optical measurements in stars of spectral type ~M4, and from there the nIR gains in precision towards cooler objects. We studied potential calibration strategies in the nIR finding that a stable spectrograph with a ThAr calibration can offer enough wavelength stability for m/s precision. Furthermore, we simulate the wavelength-dependent influence of activity (cool spots) on radial velocity measurements from optical to nIR wavelengths. Our spot simulations reveal that the radial velocity jitter does not decrease as dramatically towards longer wavelengths as often thought. The jitter strongly depends on the details of the spots, i.e., on spot temperature and the spectral appearance of the spot. Forthcoming nIR spectrographs will allow the search for planets with a particular advantage in mid- and late-M stars. Activity will remain an issue, but simultaneous observations at optical and nIR wavelengths can provide strong constraints on spot properties in active stars.Comment: accepted by ApJ, v2 accepted revision with new precision calculations, abstract abride

    Can stellar activity make a planet seem misaligned?

    Full text link
    Several studies have shown that the occultation of stellar active regions by the transiting planet can generate anomalies in the high-precision transit light curves, and these anomalies may lead to an inaccurate estimate of the planetary parameters (e.g., the planet radius). Since the physics and geometry behind the transit light curve and the Rossiter- McLaughlin effect (spectroscopic transit) are the same, the Rossiter-McLaughlin observations are expected to be affected by the occultation of stellar active regions in a similar way. In this paper we perform a fundamental test on the spin-orbit angles as derived by Rossiter-McLaughlin measurements, and we examine the impact of the occultation of stellar active regions by the transiting planet on the spin-orbit angle estimations. Our results show that the inaccurate estimation on the spin-orbit angle due to stellar activity can be quite significant (up to 30 degrees), particularly for the edge-on, aligned, and small transiting planets. Therefore, our results suggest that the aligned transiting planets are the ones that can be easily misinterpreted as misaligned owing to the stellar activity. In other words, the biases introduced by ignoring stellar activity are unlikely to be the culprit for the highly misaligned systems.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    Estimates of Active Region Area Coverage through Simultaneous Measurements of He I λλ\lambda\lambda 5876 and 10830 Lines

    Get PDF
    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876~\AA\ and 10830~\AA, respectively, in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for FEROS 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-type and warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower TeffT_\mathrm{eff}. The case of the F-type rapid rotators can be explained with the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.Comment: Accepted for publication in The Astrophysical Journa

    Extremely low long‐term erosion rates around the Gamburtsev Mountains in interior East Antarctica

    Get PDF
    The high elevation and rugged relief (>3 km) of the Gamburtsev Subglacial Mountains (GSM) have long been considered enigmatic. Orogenesis normally occurs near plate boundaries, not cratonic interiors, and large‐scale tectonic activity last occurred in East Antarctica during the Pan‐African (480–600 Ma). We sampled detrital apatite from Eocene sands in Prydz Bay at the terminus of the Lambert Graben, which drained a large pre‐glacial basin including the northern Gamburtsev Mountains. Apatite fission‐track and (U‐Th)/He cooling ages constrain bedrock erosion rates throughout the catchment. We double‐dated apatites to resolve individual cooling histories. Erosion was very slow, averaging 0.01–0.02 km/Myr for >250 Myr, supporting the preservation of high elevation in interior East Antarctica since at least the cessation of Permian rifting. Long‐term topographic preservation lends credence to postulated high‐elevation mountain ice caps in East Antarctica since at least the Cretaceous and to the idea that cold‐based glaciation can preserve tectonically inactive topography

    The Origin of Enhanced Activity in the Suns of M67

    Full text link
    We report the results of the analysis of high resolution photospheric line spectra obtained with the UVES instrument on the VLT for a sample of 15 solar-type stars selected from a recent survey of the distribution of H and K chromospheric line strengths in the solar-age open cluster M67. We find upper limits to the projected rotation velocities that are consistent with solar-like rotation (i.e., v sini ~< 2-3 km/s) for objects with Ca II chromospheric activity within the range of the contemporary solar cycle. Two solar-type stars in our sample exhibit chromospheric emission well in excess of even solar maximum values. In one case, Sanders 1452, we measure a minimum rotational velocity of vsini = 4 +/- 0.5 km/s, or over twice the solar equatorial rotational velocity. The other star with enhanced activity, Sanders 747, is a spectroscopic binary. We conclude that high activity in solar-type stars in M67 that exceeds solar levels is likely due to more rapid rotation rather than an excursion in solar-like activity cycles to unusually high levels. We estimate an upper limit of 0.2% for the range of brightness changes occurring as a result of chromospheric activity in solar-type stars and, by inference, in the Sun itself. We discuss possible implications for our understanding of angular momentum evolution in solar-type stars, and we tentatively attribute the rapid rotation in Sanders 1452 to a reduced braking efficiency.Comment: accepted by Ap

    Geometry Technology Module (GTM). Volume 1: Engineering description and utilization manual

    Get PDF
    The geometry technology module (GTM) is described as a system of computerized elements residing in the engineering design integration system library developed for the generation, manipulation, display, computation of mass properties, and data base management of panelled geometry. The GTM is composed of computer programs and associated data for performing configuration analysis on geometric shapes. The program can be operated in batch or demand mode and is designed for interactive use
    • 

    corecore