204 research outputs found

    Microbial Metropolis: Understanding how legume pasture systems interact with soil microbial communities, and subsequent greenhouse gas emissions

    Get PDF
    Non-Peer ReviewedCattle producers may graze animals on mixed pastures of non-bloat legumes and grasses. This approach can increase dietary protein uptake, improve animal value, and reduce cattle methane emissions by decreasing pasture bloat. The introduction of legumes to a grass pasture can also affect greenhouse gas (GHG) fluxes from the soil by shifting the structure of the microbial communities responsible for nitrous oxide (N2O) emissions and methane consumption, and by altering mineralization rates and soil nutrient content. Two novel forage legume-grass mixes and a grass-alfalfa control were sampled throughout the 2017 and 2018 grazing seasons and analyzed for microbial community structure, nutrient cycling rates, as well as for N2O and methane GHG fluxes. Results suggest microbial community structure, rather than microbial abundance, as one factor regulating GHG emissions. Reduced phosphorous and nitrogen supply rates were key factors limiting microbial abundance, and communities experiencing these environmental stressors were correlated with reduced N2O fluxes. Increasing microbial abundance in response to substrate availability results in depletion of soil phosphorous and nitrogen. This in turn upregulates the carbon and nitrogen cycling activities of communities. Nitrogen and soil moisture content were correlated with increasing nitrous oxide emissions, suggesting that denitrification processes are the major contributor to pasture N2O emissions. In addition, decreasing moisture increased methane consumption, providing a partial sink for cattle-derived methane emissions. Sainfoin treatments had lower cumulative methane consumption when compared to cicer milkvetch and control treatments. Further analysis suggests that different interactions between environmental factors may be involved in shaping microbial communities within each legume treatment, and that local environmental conditions at each sampling point were more important than plant cover treatments in determining daily GHG fluxes. Understanding the microbial processes at play when considering net GHG emissions within a pasture system will contribute to the future sustainability of beef production systems

    An aquarium hobbist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon

    Get PDF
    Palytoxin (PLTX) is a lethal natural toxin often found in Palythoa zoantharians that, together with its congeners, may induce adverse effects in humans after inhalation of toxic aerosols both in open-air and domestic environments, namely in the vicinity of public and private aquaria. In this study, we describe a poisoning of an aquarium hobbyist who was hospitalized after handling a PLTXs-containing zoantharian hexacoral. Furthermore, we provide evidence for water detoxification. The zoantharian was morphologically and genetically identified as Palythoa cf. toxica (Cnidaria: Anthozoa). Palytoxin itself and two new PLTX congeners, a hydroxyPLTX and a deoxyPLTX, were detected and structurally identified by liquid chromatography high resolution multiple stage mass spectrometry (LC-HRMSn, n = 1, 2). Total and individual toxins were quantified by LC-HRMS and sandwich ELISA both in the zoantharian (93.4 and 96.80 \u3bcg/g, respectively) and in the transport water (48.3 and 42.56 \u3bcg/mL, respectively), with an excellent mean bias of 1.3% between the techniques. Activated carbon adsorbed 99.7% of PLTXs contained in the seawater and this represents a good strategy for preventing aquarium hobbyist poisonings

    Legume based pasture rejuvenation for greenhouse gas outcomes

    Get PDF
    Non-Peer ReviewedIncorporating legumes into a grass based pasture system has multiple benefits. A grass/legume blend increases the dietary protein of foraging cattle over grass alone. Furthermore, symbiotic biological nitrogen fixation introduces additional nitrogen to the pasture system thereby potentially lessening the need for synthetic fertilizers. However, over time, pastures initially seeded with a blend of grasses and legumes will tend towards increasing grass dominance such that the presence and benefits of legumes diminishes. Reestablishing legumes on a mature pasture can restore these important functions. By improving ruminant diet and therefore feed conversion ratios as well as decreasing nitrogen fertilizer applications, pasture rejuvenation, through the introduction of legumes, is expected to lower the greenhouse gas cost of grazing livestock on a per output basis. However, disturbance of soils, which can be part of various rejuvenation techniques, can result in losses of soil carbon thereby offsetting potential at least some of the greenhouse gas benefits. Sod-seeding may be an effective strategy to establish legumes in a mature pasture thereby incurring benefits without heavily disrupting soils and incurring soil carbon loss. To test this, a multiyear experiment, including cattle, vegetation (specifically the incorporation of non-bloat legumes: cicer milkvetch and sainfoin), soils and microbiota, was established near Lanigan, SK to examine the impact of sod-seeded legume pasture rejuvenation on greenhouse gases

    Northwest Pacific ice-rafted debris at 38°N reveals episodic ice-sheet change in late Quaternary Northeast Siberia

    Get PDF
    The ice-rafted-debris (IRD) record of the open Northwest Pacific points towards the existence of substantial glacial ice on the Northeast Siberian coast during the late Quaternary. However, the scale and timing of glaciation and de-glaciation remains controversial due to the dearth of both onshore and offshore records. Existing IRD data suggests at least one event of dynamic and abrupt change during mid-late Marine Isotope Stage (MIS 3) which mimics the massive collapse of the Laurentide ice sheet during Heinrich Events. It is uncertain whether other events of this magnitude occurred during the late Quaternary. Here we present a ∼160,000 yr IRD series, planktic foraminiferal counts and an age model, derived from a benthic δ18O curve, radiocarbon dates and tephrochronology, from core ODP 1207A (37.79°N, 162.75°E), revealing the presence of low but episodic flux of IRD. We conclude that glacial Northwest Pacific icebergs spread further south than previously thought, with icebergs emanating from Northeast Siberia being transported to the transition region between the subpolar and subtropical waters, south of the subarctic front during at least the Quaternary's last two glacial periods. The episodic nature of the 1207A IRD record during the last glacial, combined with coupled climate-iceberg modelling, suggests occasional times of much enhanced ice flux from the Kamchatka-Koryak coast, with other potential sources on the Sea of Okhotsk coast. These findings support the hypothesis of a variable but extensive ice mass during the last glacial over Northeast Siberia, particularly early in the last glacial period, behaving independently of North American and Eurasian ice masses. In strong contrast, IRD was absent during much of the penultimate glacial Marine Isotope Stage (MIS) 6 suggesting the possibility of very different Northeast Siberian ice coverage between the last two glacial periods

    Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems

    Get PDF
    Loss of biodiversity from lower to upper trophic levels reduces overall productivity and stability of coastal ecosystems in our oceans, but rarely are these changes documented across both time and space. The characterisation of environmental DNA (eDNA) from sediment and seawater using metabarcoding offers a powerful molecular lens to observe marine biota and provides a series of ‘snapshots’ across a broad spectrum of eukaryotic organisms. Using these next-generation tools and downstream analytical innovations including machine learning sequence assignment algorithms and co-occurrence network analyses, we examined how anthropogenic pressures may have impacted marine biodiversity on subtropical coral reefs in Okinawa, Japan. Based on 18 S ribosomal RNA, but not ITS2 sequence data due to inconsistent amplification for this marker, as well as proxies for anthropogenic disturbance, we show that eukaryotic richness at the family level significantly increases with medium and high levels of disturbance. This change in richness coincides with compositional changes, a decrease in connectedness among taxa, an increase in fragmentation of taxon co-occurrence networks, and a shift in indicator taxa. Taken together, these findings demonstrate the ability of eDNA to act as a barometer of disturbance and provide an exemplar of how biotic networks and coral reefs may be impacted by anthropogenic activities

    Landscape-scale drivers of glacial ecosystem change in the montane forests of the eastern Andean flank, Ecuador

    Get PDF
    Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accu- rately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from the tropical montane cloud forest of the eastern Andean flank of Ecuador provides evidence of the role of non- climate drivers of vegetation change (volcanic events, fire regime and herbivory) during the late-Pleistocene. Multiproxy analysis (pollen, non-pollen palynomorphs, charcoal, geochemistry and carbon content) of the se- diments, radiocarbon dated to ca. 45–42 ka, provide a snap shot of the depositional environment, vegetation community and non-climate drivers of ecosystem dynamics. The geomorphology of the Vinillos study area, along with the organic‐carbon content, and aquatic remains suggest deposition took place near a valley floor in a swamp or shallow water environment. The pollen assemblage initially composed primarily of herbaceous types (Poaceae-Asteraceae-Solanaceae) is replaced by assemblages characterised by Andean forest taxa, (first Melastomataceae-Weinmannia-Ilex, and later, Alnus-Hedyosmum-Myrica). The pollen assemblages have no modern analogues in the tropical montane cloud forest of Ecuador. High micro-charcoal and rare macro-charcoal abundances co-occur with volcanic tephra deposits suggesting transportation from extra-local regions and that volcanic eruptions were an important source of ignition in the wider glacial landscape. The presence of the coprophilous fungi Sporormiella reveals the occurrence of herbivores in the glacial montane forest landscape. Pollen analysis indicates a stable regional vegetation community, with changes in vegetation population co- varying with large volcanic tephra deposits suggesting that the structure of glacial vegetation at Vinillos was driven by volcanic activity

    Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    Full text link
    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.]Comment: 31 pages, 20 figures, 1 table, accepted for publication in JCAP, references and discussions adde

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table

    Low Q^2 Jet Production at HERA and Virtual Photon Structure

    Get PDF
    The transition between photoproduction and deep-inelastic scattering is investigated in jet production at the HERA ep collider, using data collected by the H1 experiment. Measurements of the differential inclusive jet cross-sections dsigep/dEt* and dsigmep/deta*, where Et* and eta* are the transverse energy and the pseudorapidity of the jets in the virtual photon-proton centre of mass frame, are presented for 0 < Q2 < 49 GeV2 and 0.3 < y < 0.6. The interpretation of the results in terms of the structure of the virtual photon is discussed. The data are best described by QCD calculations which include a partonic structure of the virtual photon that evolves with Q2.Comment: 20 pages, 5 Figure
    corecore