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A B S T R A C T

Understanding the impact of landscape-scale disturbance events during the last glacial period is vital in accu-
rately reconstructing the ecosystem dynamics of montane environments. Here, a sedimentary succession from
the tropical montane cloud forest of the eastern Andean flank of Ecuador provides evidence of the role of non-
climate drivers of vegetation change (volcanic events, fire regime and herbivory) during the late-Pleistocene.
Multiproxy analysis (pollen, non-pollen palynomorphs, charcoal, geochemistry and carbon content) of the se-
diments, radiocarbon dated to ca. 45–42 ka, provide a snap shot of the depositional environment, vegetation
community and non-climate drivers of ecosystem dynamics. The geomorphology of the Vinillos study area, along
with the organic‑carbon content, and aquatic remains suggest deposition took place near a valley floor in a
swamp or shallow water environment. The pollen assemblage initially composed primarily of herbaceous types
(Poaceae-Asteraceae-Solanaceae) is replaced by assemblages characterised by Andean forest taxa, (first
Melastomataceae-Weinmannia-Ilex, and later, Alnus-Hedyosmum-Myrica). The pollen assemblages have no
modern analogues in the tropical montane cloud forest of Ecuador. High micro-charcoal and rare macro-charcoal
abundances co-occur with volcanic tephra deposits suggesting transportation from extra-local regions and that
volcanic eruptions were an important source of ignition in the wider glacial landscape. The presence of the
coprophilous fungi Sporormiella reveals the occurrence of herbivores in the glacial montane forest landscape.
Pollen analysis indicates a stable regional vegetation community, with changes in vegetation population co-
varying with large volcanic tephra deposits suggesting that the structure of glacial vegetation at Vinillos was
driven by volcanic activity.

1. Introduction

Mid-elevation tropical forests have been identified as some of the
most biodiverse yet at risk terrestrial ecosystems in the world due to
their high degree of endemism, sensitivity to climate change and an-
thropogenic impact (Bruijnzeel et al., 2011; Churchill et al., 1995;
Hamilton et al., 1995). However, questions remain regarding their
ecosystem processes and the role of environmental drivers as mechan-
isms of ecosystem change.

Tropical montane cloud forests (TMCF) are distinguished from other
types of tropical forest by their association with montane environments
immersed in frequent ground level cloud (Grubb, 1971, 1977). TMCF
on the eastern Andean flank of northern Ecuador occur between ca.

1200–3600 m above sea level (m asl) and inhabit a dynamic and het-
erogeneous landscape (Harling, 1979; Sierra, 1999). Steep topo-
graphical changes produce environmental gradients that change
abruptly with variation in precipitation, temperature and solar radia-
tion (Sarmiento, 1986). Changes in climate associated with cloud cover
play an important role in natural cloud forest structure and composition
(Churchill et al., 1995; Fahey et al., 2016; Hamilton et al., 1995).
However, modern anthropogenic pressures (e.g. land-use change, land-
cover modification, pollution) arguably exceeded climate as the domi-
nant control on vegetation structure through much of the TMCF of the
eastern Andean flank (Sarmiento, 1995).

Non-climate drivers of ecosystem change in TMCF play a key role in
increasing landscape and vegetation heterogeneity (Crausbay and

http://dx.doi.org/10.1016/j.palaeo.2017.10.011
Received 5 April 2017; Received in revised form 30 September 2017; Accepted 9 October 2017

⁎ Corresponding author at: School of Environment, Earth & Ecosystems Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, United Kingdom.
E-mail address: nicholas.loughlin@open.ac.uk (N.J.D. Loughlin).

Palaeogeography, Palaeoclimatology, Palaeoecology 489 (2018) 198–208

Available online 13 October 2017
0031-0182/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/00310182
https://www.elsevier.com/locate/palaeo
http://dx.doi.org/10.1016/j.palaeo.2017.10.011
http://dx.doi.org/10.1016/j.palaeo.2017.10.011
mailto:nicholas.loughlin@open.ac.uk
https://doi.org/10.1016/j.palaeo.2017.10.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.palaeo.2017.10.011&domain=pdf


Martin, 2016). Modern natural (non-human) drivers of ecosystem
change include abiotic processes such as volcanic eruptions, earth-
quakes, landslides and fire, while biotic processes such as plant-animal
interactions, disease, forest die-back and a variety of edaphic factors,
e.g. nutrient limitation, are all associated with landscape-scale mod-
ification of the environment. The stochastic nature of these abiotic and
biotic drivers, coupled with high landscape heterogeneity can alter
vegetation at a local to regional scale, over geologically short periods of
time. In order to better understand ecosystem function in montane
environments the role of non-climate drivers of vegetation change
during different climate regimes (e.g. glacial periods), and in the ab-
sence of modern anthropogenic impact, needs to be ascertained.

Long sedimentary records from large lakes indicate climate is the
primary driver of vegetation change over millennial scale time frames
within the Andes (Hanselman et al., 2011; van der Hammen and
Hooghiemstra, 2003). The only lake records from within the TMCF
habitat of the eastern Andean flank that extend from prior to the last
glacial maximum occur at Lake Consuelo in southern Peru (Bush et al.,
2004; Urrego et al., 2005, 2010) and at Funza and Fúquene in central
Colombia (Bogotá-A et al., 2011; Hooghiemstra, 1984; van der
Hammen and Hooghiemstra, 2003). Analysis of past vegetation change
in the TMCF of the eastern Andean flank of Ecuador is limited due to
the paucity of suitably preserved sediments. Palynological analysis of
discontinuous sediments from cliff sections at the Mera, Erazo and San
Juan de Bosco sites indicate changing forest assemblages through the
Quaternary are driven by long-term changes in climate (Bush et al.,

1990; Cárdenas et al., 2011, 2014; Colinvaux et al., 1997; Keen, 2015;
Liu and Colinvaux, 1985). However, the role of short-term non-climate
drivers of vegetation change has yet to be investigated in this setting.

Here we use a multi-proxy approach (pollen, non-pollen palyno-
morphs, wood macro-remains, charcoal, geochemistry and carbon
content) to reconstruct a snap shot of a glacial montane forest vegeta-
tion community. We assess the role of volcanic activity (volcanic tephra
layers), fire regime (charcoal) and herbivory (Sporormiella) as eco-
system drivers of vegetation change in a glacial montane forest and
discuss the importance of incorporating non-climate drivers of vegeta-
tion change into palaeoecological reconstructions of TMCF.

2. Study site

A new section was located at Vinillos (0°36′2.8″S, 77°50′48.8″W),
near the town of Cosanga in the Napo Province, Ecuador. The Vinillos
site is situated at 2090 m asl between the Cordillera Real and Napo
Uplift on the eastern Andean flank of northern Ecuador (Fig. 1). The
exposure is located on the eastern side of the Cosanga Valley, and was
uncovered during construction of the Troncal Amazónica (E45); the
highway adjacent to the Río Cosanga.

Modern climate data from the study region is sparse, however,
15 years of data from the nearby town of Baeza (Fig. 1) indicates an
average of 2320 mm of precipitation per annum (Valencia et al., 1999).
High levels of orographic rainfall and semi-permanent ground level
cloud lead to persistent moist conditions (Harling, 1979). Mean annual
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temperatures range from 16 to 20 °C throughout the year due to stable
levels of solar radiation and low seasonality (Galeas and Guevara, 2012;
Harling, 1979), however, diurnal changes in temperature of up to 20 °C
can occur at higher elevations, acting as a much more significant con-
trol on vegetation distribution than seasonal changes in temperature
(Neill and Jørgensen, 1999).

Today the Vinillos section is situated within tropical montane cloud
forest vegetation (Fig. 1) (Neill, 1999; Sierra, 1999; Webster, 1995).
The modern vegetation at Vinillos is composed primarily of Andean
forest elements such as Arecaceae, Betulaceae (Alnus), Chloranthaceae
(Hedyosmum), Cunoniaceae (Weinmannia), Ericaceae, Fabaceae, Laur-
aceae, Melastomataceae, Moraceae, Rubiaceae and Urticaceae (Ce-
cropia) with abundant epiphytic mosses, lichens, ferns, Bromeliaceae,
Araceae and Orchidaceae (Cárdenas et al., 2014; Grubb et al., 1963;
Valencia et al., 1998).

Anthropogenic disturbance and deforestation in the region means
that the modern vegetation is a mosaic of arable land, pastures and
secondary forest. Modern pollen-vegetation relationships have not been
studied extensively in the region of Vinillos, however, a modern pollen
altitudinal transect (1895 m–2220 m asl) from the nearby Erazo site

(Fig. 1) does provide a representation of the human impacted pollen
signal showing an over representation of the disturbance indicator Ce-
cropia (Cárdenas et al., 2014). Studies of pollen-vegetation relationships
from montane forests elsewhere in the Andes indicate that the modern
pollen rain of tropical montane cloud forests is comprised of a combi-
nation of Andean and lowland forest taxa (Rull, 2006; Weng et al.,
2004b).

3. Methods

3.1. Sediment sampling

The Vinillos section is composed of 325 cm of interbedded organic
layers (identified with the prefix O) and volcanic tephra deposits
(identified with the prefix T) (Fig. 2). Forty-four sediment samples were
collected in 2012 through the six organic layers at approximately 5 cm
intervals. A further four samples were collected, one from each of the
four volcanic tephra layers. The exposure was cleared of surface sedi-
ment and vegetation prior to sampling, which commenced in the up-
permost dark-brown organic layer below the weathered surface soils. A
knife was used to extract 1 cm wedges of sediment from the section,
which were placed in zip locked bags, labelled and kept cool prior to
transport to The Open University (UK) where they were stored in a cold
store (3–5 °C). Descriptions of the sediments were recorded during
sampling.

3.2. Radiocarbon dating

Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of
two palynomorph residues from the top and base of the Vinillos section
was undertaken to constrain the age of the sediments. Palynomorph
residues were used as they have been shown to produce more reliable
ages than bulk samples in regions of high rainfall (Newnham et al.,
2007; Vandergoes and Prior, 2003). Guidelines, based on standard
palynological protocols (Faegri and Iversen, 1989) were provided by
the Natural Environment Research Council (NERC) Radiocarbon Fa-
cility-East Kilbride (NRCF). Preparation included the mechanical
sieving of the sediment at 100 μm and the use of HCL, KOH and HF to
concentrate palynomorphs from the bulk sediment.

3.3. Loss-on-ignition

Forty-eight 2 cm3 subsamples of sediment were extracted for loss-
on-ignition (LOI) analysis. A standard LOI protocol was undertaken
(Heiri et al., 2001). Samples were dried at 40 °C for up to 5 days to
remove moisture, followed by with controlled burns at 550 °C for 4 h to
remove organics, and 950 °C for 2 h to remove carbonates, with the
remaining material classified as siliciclastics. Weighing of samples took
place after each phase and the weight loss converted to a percentage of
the dry weight.

3.4. X-ray fluorescence

Major element analysis using X-ray fluorescence (XRF) was under-
taken on the four tephra layers and two internal standards using stan-
dard protocols (Enzweiler and Webb, 1996; Thomas and Haukka,
1978). Glass disks were produced and analysed using an ARL 8420+
dual goniometer wavelength dispersive XRF spectrometer at The Open
University to determine the major element composition (SiO2, TiO2,
Al2O3, Fe2O3, MnO, MgO, Cao, Na2O, K2O, P2O5) of the tephra material.

3.5. Charcoal analysis

Twenty-nine samples from the organic sediments were examined for
microscopic charcoal (5–100 μm) in the slides mounted for palyno-
morphs analysis. Fifty random fields of view from each palynomorph
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slide were recorded for microscopic charcoal remains and exotic
Lycopodium at 200× magnification (Clark and Patterson, 1997;
Whitlock and Larsen, 2001). Micro-charcoal values were then con-
verted to concentration per cm3. Fifty 1 cm3 subsamples of material
were also processed and analysed for macroscopic charcoal particles
(> 100 μm). Sediment was deflocculated in 15 ml of a 10% solution of
KOH at 80 °C for 20 min and then washed through a sieve at 100 μm
(Whitlock and Larsen, 2001). The remaining residue was then analysed
under a low power (20×) microscope in a bogorov tray and all char-
coal particles recorded. Particles were identified by their angular form,
brittle nature and high reflectivity (Clark and Royall, 1995).

3.6. Palynomorph analysis

Twenty-six discrete sediment samples were chosen for the ex-
amination of palynomorphs at approximately 10 cm intervals through
the organic layers and in all of the volcanic tephra layers. Organic
samples of 1 cm3 were processed using standard laboratory procedures
(Faegri and Iversen, 1989). Volcanic tephra samples of 6 cm3 were
processed using density separation (Bromoform; 2 mol), due to the
highly siliciclastic nature of the sediments and low palynomorph con-
centration (Moore et al., 1991). Samples using these two methods of
palynomorph recovery have been shown to be directly comparable
(Campbell et al., 2016). The addition of an exotic marker; here Lyco-
podium batch #124961: averaging 12,542 ± 931 spores per tablet,
was added in order to determine palynomorph concentrations
(Stockmarr, 1971). Samples were mounted in glycerol on glass slides
and counted at 400× and 1000× magnification using a Nikon Eclipse
50i microscope. Counting of all palynomorphs (pollen, algae, fungal
and zoological remains) was undertaken until a minimum of 300 ter-
restrial pollen grains (305–474) were recorded per sample, corre-
sponding to between 0–113 algal remains, 0–2620 fungal NPPs and
0–12 zoological remains. Reference material at The Open University, an
open access online pollen database (Bush and Weng, 2007) and pub-
lished pollen atlases (Colinvaux et al., 1999; Hooghiemstra, 1984;
Roubik and Moreno, 1991), were used to identify pollen grains. Non-
pollen palynomorph (NPP) identification was undertaken using the
available literature (Bakker and Van Smeerdijk, 1982; Cugny et al.,
2010; Gelorini et al., 2011; Hooghiemstra, 1984; López-Vila et al.,
2014; Montoya et al., 2010, 2012; Rull et al., 2008; Rull and Vegas-
Vilarrúbia, 1998, 1999; van Geel, 1978; van Geel et al., 1981, 1983,
1989, 2003, 2011; van Geel and Aptroot, 2006; van Smeerdijk, 1989).
New NPP morphotypes (assigned with the prefix OU) were recorded
and are described in Loughlin et al. (2017).

3.7. Zonation of palynomorphs

Statistically significant zones were established for pollen assem-
blages in the program PSIMPOLL (Bennett, 2008). Data were filtered to
include only terrestrial pollen taxa that occurred in> 1 sample and at
an abundance of> 2% in at least a single sample. Aquatic elements,
spores and NPPs were excluded. Zonation was performed by optimal
splitting by information content, using the broken stick method to

determine the significant number of zones (Bennett, 1996). The pollen
assemblages were then applied to the palynomorph diagrams which
were plotted in the program C2 (Juggins, 2007).

4. Results

4.1. Chronology

Radiocarbon dating from the upper and lower portion of the Vinillos
section (20 cm and 309 cm) returned dates whose one standard devia-
tion error overlap. Calibration of reported dates was undertaken in
OxCal 4.2.4 (Bronk Ramsey et al., 2013) using the IntCal13 atmo-
spheric curve (Reimer et al., 2013). Uncertainties in the dates indicate it
is not possible to construct a robust chronology or establish the rate of
sedimentation. However, the radiocarbon dates do indicate deposition
of the Vinillos sediments took place during the late Pleistocene ca.
45–42 ka (Table 1).

4.2. Sediments

The Vinillos section is composed of dark-brown to black organic
layers with occasional pale grey lenses of volcanic ash interbedded with
pale grey to beige volcanic tephra deposits. The sedimentary succession
is composed of two offset portions, starting from the base of the ex-
posure, Section B (SB) occurs from 325 cm to 140 cm and Section A
(SA) from 135 cm to 0 cm, separated by a 5 cm sand layer that was not
sampled, giving an overall thickness of 325 cm in length (Fig. 2). LOI of
the basal 20 cm of the Vinillos section (a black organic-rich clay) in-
dicates an organic carbon content of 22–34 wt%. Organic carbon is
reduced to 3–9 wt% for the remainder of SB following the first occur-
rences of lenses of volcanic ash occurring at ca. 300 cm. Units SAO2 and
SAO1 which make up the organic units of SA show a gradual increase in
organic carbon through the beds after each tephra layer from 9 to 16 wt
% and 8–20 wt% respectively. Carbonate content is low throughout the
Vinillos section ranging from 0.5–2.5 wt%, with a mean of 0.9 wt%.
Two unidentified large (> 30 cm in length and> 10 cm in diameter)
wood macro-fossils were recovered from the outcrop, one within or-
ganic bed SBO1 and the other in SBO2 where it meets tephra layer T4
(Fig. 4).

4.3. Volcanic tephra layers

Four discrete volcanic tephra layers of different thicknesses were
identified at Vinillos, T1 (18 cm), T2 (25 cm), T3 (40 cm) and T4
(23 cm). Geochemical analysis of the volcanic tephra layers using XRF
indicate chemical compositions that can be characterised as an andesite
(T1), basaltic andesite (T2), trachy-andesite (T3) and dacite (T4)
(Fig. 3). Combustion of samples using LOI prior to XRF indicate that
volcanic tephra samples contain between 3 and 12% organic carbon
and are therefore not purely inorganic volcanic deposits (Fig. 2). Pollen
was detected and identified within each tephra layer. Fungal NPPs were
identified within T3 and T4, but no discernible NPP remains were
identified from T1 and T2.

Table 1
Accelerator mass spectrometry (AMS) radiocarbon (14C) dating of palynomorph residues.

Publication code Sample depth
(cm)

δ13CVPDB
a (‰) Radiocarbon ageb (yr B.P. ± 1σ) Calibrated* radiocarbon age (yr B.P. ± 1σ) Calibrated* radiocarbon age (median

probability)

SUERC-58952 20 −27.4 38,503 ± 968 41,885–43,325 42,670
SUERC-58953 309 −27.1 40,524 ± 1245 43,091–45,218 44,300

a δ13CVPDB (‰) values were determined from using an aliquot of sample CO2 and were measured on a dual inlet stable isotope mass spectrometer (Thermo Scientific Delta V Plus) and
are representative of δ13C in the pre-treated sample material.

b Conventional radiocarbon years B.P. (relative to 1950 CE), expressed at the± 1σ level for overall analytical confidence. Calculated from 14/13 ratios analysed by AMS which were
subsequently corrected to δ13CVPDB = −25‰ using the δ13C values listed in this table and corrected for background contamination using the NERC Quartz tube combustion background
of +0.17 ± 0.1% modern carbon.
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4.4. Macro- and micro-charcoal

Macro-charcoal was recovered from eleven of the forty-eight sam-
ples examined (Fig. 4). The charcoal occurred at a concentration of

1–26 fragments per cm3. Nine of the eleven samples which contained
macro-charcoal occur in the volcanic tephra layers or directly adjacent
to them, the two other samples were from near the base of SBO3,
concomitant with the first organic sediments to contain volcanic ash
lenses. Micro-charcoal is present in each of the 29 samples analysed.
The abundance of micro-charcoal ranged from 2500 to 140,000 frag-
ments per cm3, with a mean of 44,500 fragments per cm3. Maximum
micro-charcoal concentrations correlate with the maximum macro-
charcoal concentration, occurring directly below T1 and in the samples
collected at a height of 35–25 cm (SAO1) where the youngest organic
samples occur with volcanic ash lenses.

4.5. Palynomorphs

Zonation of pollen yielded three statistically significant strati-
graphic zones, VIN 1 to VIN 3. (Figs. 5, 6 and 7).

4.5.1. Pollen zone VIN 1
VIN 1 (13 samples, 320–140 cm) corresponds to SB and is char-

acterised by abundant Poaceae (4–30%) and fern spores (22–36%).
Alnus has a low abundance (2–9%) at the base of the zone increasing
after T4 to 7–21%, while Solanaceae occurs at 1–9% at the base of the
zone and decreases after T4 to 0.3–1.4%. Asteraceae (3–17%),
Melastomataceae (2–13%), Hedyosmum (3–10%), Ericaceae (1–9%) and
Clusiaceae (4–10%) are consistently present but in low abundance.
Pollen concentrations occur at 60,000–270,000 grains per cm3 at the
base of the zone decreasing to 17,000–84,000 grains per cm3 after T4.
The most abundant fungal NPP morphotypes in VIN 1 include HdV.123
(1–24%), HdV.495 (1–19%) and IBB.259 (1–14%). The obligate co-
prophilous fungal spore Sporormiella is present in two samples in low
abundance (< 3%). Coniochaeta cf. ligniaria occurs in low abundances
below T4 (0–6%) increasing to 7–17% in the beds containing wood
macro-fossils. The semi-aquatic Cyperaceae fluctuate between 1 and
13%. The lower part of the zone aquatic remains include Isoëtes
(< 3%), Spyrogyra (< 3%), Concentricystis (< 8%) and Mougeotia
(< 5%) and along with the sole aquatic zoological remains of HdV.179
(< 4%). Above the lowest volcanic tephra layer aquatic remains are
reduced with only Spirogyra (< 4%) occurring in a single sample
(Fig. 7).

4.5.2. Pollen zone VIN 2
VIN 2 (6 samples, 140–75 cm) corresponds to SAO2, T1 and the

lower most sample in SAO1 and is characterised by an abrupt decrease
in the percentage of Poaceae (2–5%), fern spores (12–17%), Alnus
(3–7%) and Asteraceae (3–5%). Melastomataceae (15–27%),
Weinmannia (6–27%) and Ilex (1–8%) increase along with a sharp in-
crease in pollen concentration to 300,000–950,000 grains per cm3, with
Melastomataceae and Weinmannia peaking at 251,000 and 282,000
grains per cm3 respectively in sample 115 cm, before dropping
to< 110,000 per cm3 immediately at T1. Fungal NPP concentration is
at its lowest point in VIN 2 (< 20,000 per cm3) and is effectively barren
(< 10,000 per cm3) for 4 of the 6 samples within the zone. Semi-
aquatic Cyperaceae are reduced occurring at 1–2%, with aquatic ele-
ments Isoëtes (< 1%) and Spirogyra (< 2%) only present in single
samples.

4.5.3. Pollen zone VIN 3
VIN 3 (7 samples, 75–0 cm) corresponds to SAO1 except for the

lowermost sample and is characterised by an increase in Alnus
(20–28%), Myricaceae (3–9%) and fern spores (18–41%) in conjunction
with a moderate increase in Hedyosmum (8–13%), Asteraceae (4–11%)
and Poaceae (7–8%). Melastomataceae (5–11%), Weinmannia (< 5%)
and Ilex (< 1%) all decrease. The pollen concentration is reduced again
to that of VIN 1 (30,000–210,000 grains per cm3). Fungal NPP remains
OU-108 (9–75%), HdV.123 (9–690%), HdV.495 (6–16%) and IBB.259
(5–18%) are the primary morphotypes with OU-108 dominant and
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HdV.123 hyper-dominant in the samples from 15 cm and 5 cm re-
spectively. NPP concentration is highly variable in VIN 3 (ca.
40,000–250,000 per cm3) and reaches peak abundance in sample
55 cm. The obligate coprophilous fungi Sporormiella (0–3%) returns in
low abundance in VIN 3 appearing in a more continuous fashion. Semi-
aquatic Cyperaceae increase (4–8%) along with the return of more
persistent aquatics elements Isoëtes (1–14%), Spirogyra (0–33%),
Concentricystis (0–3%) and Mougeotia (0–3%).

5. Interpretation and discussion

Calibrated radiocarbon dates from the top and bottom of the
Vinillos section indicate that the sediments were deposited over a
period of approximately 2000 years between 44.3 and 42.7 ka
(Table 1). Deposition of the sediments occurred between intervals of
increased precipitation during Heinrich events HE 4 (38.3–40.2 ka) and
HE 5 (47.0–50.0 ka) (Mosblech et al., 2012; Sanchez Goñi and Harrison,
2010), within a period characterised by an oscillating climate corre-
sponding to Dansgaard-Oeschger interstadials 11–9 (Blunier and Brook,
2001; Mosblech et al., 2012). Long sedimentary records from Andean
lakes have shown vegetation responding to these climate fluctuations
(Hanselman et al., 2011; van der Hammen and Hooghiemstra, 2003).
These changes in climate likely contributed to vegetation change within
the sedimentary snap shot at Vinillos, however, here we show that the
often neglected non-climate drivers of vegetation change are vital in
interpreting past ecosystem dynamics driving landscape-scale change in
the glacial montane forest of the eastern Andean flank.

5.1. Depositional environment

The position of the Vinillos section near the base of an Andean
valley suggests that deposition of the sediments took place in aquatic
conditions on or near the valley floor. Fungal NPPs characteristic of

swamp or bog conditions (HdV-123, HdV-16A) and the modern cloud
forests (IBB.259) suggest deposition in a shallow water environment
(Loughlin et al., 2017). Preservation of the sediments occurred as in-
cision of a tributary of the Río Cosanga, now ca. 29 m below the Vinillos
section exposed the Vinillos sediments within the valley wall. Down
cutting of the river is therefore calculated to occur at a rate of 6.9 mm
per year between present day and the deposition of the youngest Vi-
nillos sediments ca. 42 ka. This rate is at the upper end of predicted
rates of denudation for eastern Andean montane rivers and is likely to
reflect the high levels of precipitation that occur in the region (Aalto
et al., 2006). No evidence of fluvial channel sediments have been
identified in the Vinillos section sediments. The multiple volcanic te-
phra layers interbedded with the organic beds may have acted as a
protective cap, preserving palynomorphs and wood macro-fossil re-
mains from oxidisation (Keen, 2015).

Aquatic pollen, algae and zoological remains preserved in the sec-
tion signify the aquatic depositional environment of VIN 1 and VIN 3
(Fig. 7), with the highest proportion of aquatic remains occurring prior
to the oldest volcanic tephra layer (T4) and subsequent to the youngest
volcanic tephra layer (T1). This increase in the aquatic components
may correspond to periods of reduced moisture availability during
Dansgaard-Oeschger interstadials 11–9, as observed in Lake Consuelo
(Urrego et al., 2010). Aquatic remains become rare or absent during
deposition of the four volcanic tephra layers, within VIN 2 and where
lenses of volcanic ash occur within the organic sediments. This suggests
that volcanic ash deposition may have led to inhospitable aquatic
conditions during and immediately after its deposition, driving the
change in aquatic remains.

5.2. Glacial vegetation on the eastern Andean flank

The Vinillos section contains pollen taxa which are present within
the modern pollen spectra of the eastern Andean flank, however, the
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fossil pollen assemblages are compositionally unlike any comparable
modern pollen assemblage from the region (Cárdenas et al., 2014;
Marchant et al., 2001; Rull, 2006; Weng et al., 2004b). This no-ana-
logue pollen assemblage (sensu Williams and Jackson, 2007), indicates
that a novel vegetation community existed at Vinillos during the late
Pleistocene. The high abundance and association of typical Andean
arboreal pollen taxa (e.g. Alnus, Weinmannia, Hedyosmum), presence of
large wood macro-fossils and low levels of Poaceae throughout the
section (mean 13.5%) are used to suggest a montane forest community
was present during the deposition of the Vinillos sediments. Three
pollen zones provide evidence for dynamic changes to the glacial forest
pollen assemblage characterised by the dominance of Poaceae-Aster-
aceae-Solanaceae in VIN 1, Melastomataceae-Weinmannia-Ilex in VIN 2,
and Alnus-Hedyosmum-Myrica in VIN 3. These changes in pollen as-
semblage through the Vinillos section are due to shifts in the abundance
of particular pollen taxa and not the wholescale replacement of parti-
cular species, indeed every taxon except Myrtaceae and Cecropia can be
found in each of the three pollen zones (Fig. 5). This change in pollen
abundance between assemblages within a closed canopy moist tropical
forests can indicate distinct changes in vegetation structure (Gosling
et al., 2005, 2009). Pollen analysis from glacial Neotropical sedimen-
tary archives have previously been used to conclude that millennial
scale changes in temperature and moisture balance have driven vege-
tation change through the Quaternary (Baker et al., 2001; Bogotá-A
et al., 2011; Bush et al., 2004; Colinvaux et al., 2000; Gosling et al.,
2008; Groot et al., 2011; Mourguiart and Ledru, 2003; Urrego et al.,
2005, 2010, 2016). However, the cumulative effect of climate change
on landscape-scale drivers such as increased precipitation leading to
more frequent landslides is rarely discussed (Stern, 1995; Bussmann

et al., 2008). Incorporating landscape-scale drivers into past and future
projections of vegetation change is essential in understanding how
montane forest respond to environmental change. The three pollen
assemblage shifts at Vinillos occurring over approximately 2 ka
(44.3–42.6 ka) and in conjunction with volcanic tephra deposits suggest
that non-climate factors can be the primary driver of short-term change
in glacial montane forest communities. This pattern of population
change is analogous to modern montane forest communities, where
landscape heterogeneity, environmental variability and stochastic dis-
turbance events lead to local variation in vegetation population within
an identifiable vegetation zone.

5.3. Landscape-scale drivers of vegetation change

5.3.1. Herbivory
Remains of Pleistocene megaherbivores such as giant ground sloths

(Megatheriidae), armadillos (Chlamyphoridae) and Proboscideans
(Gomphotheridae) have been found in the inter-Andean plain and
lowland Amazonian rainforest of Ecuador (Coltorti et al., 1998;
Marshall et al., 1983), but little evidence exists of herbivory within the
steep slopes of the intermediate montane forest region. The Vinillos
record contains low abundances (< 3%) of the ascospore Sporormiella
(Fig. 6), an obligate coprophilous fungi which requires ingestion by
herbivorous before being deposited in dung to complete its life cycle
(Krug et al., 2004). Sporormiella has been used to determine changes in
herbivore population and collapse during the late-Quaternary extinc-
tion (Davis, 1987; Gill et al., 2009), when large Pleistocene herbivores
were likely important drivers of ecosystem change within the tropics
(Corlett, 2013). The presence of Sporormiella at Vinillos suggests the
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local presence of herbivores along the valley floor within the glacial
montane forest environment, but cannot provide further information on
the type of herbivore or their abundance. The presence of small and
large fauna may have contributed to seed dispersal, vegetation open-
ness and hence fire reduction within the glacial montane forest en-
vironment.

5.3.2. Fire regime
Fire is an important a driver of vegetation change in the Neotropics

(Bond and Keeley, 2005; van der Werf et al., 2008). However, high
levels of year-round precipitation and ground level cloud within
modern TMCF mean that they rarely burn naturally (Crausbay and
Martin, 2016). The global fire regime has been shown to be diminished
during glacial periods (Daniau et al., 2010), with Neotropical charcoal
records containing reduced concentrations during the last glacial period
(Hanselman et al., 2011; Mayle et al., 2009). Regional fires are in-
dicated by the presence of micro-charcoal (< 100 μm) throughout the
Vinillos sediments, however the rare and limited concentrations (< 27
fragments per cm3) of macro-charcoal (> 100 μm) (Fig. 4), which are
indicative of local fires, suggests local burning was unlikely to have
occurred (Whitlock and Larsen, 2001). The prevalence of burning in fire
prone high elevation Páramo environments may indicate that charcoal
fragments deposited at Vinillos were transported from this more

combustible habitat (Coblentz and Keating, 2008; Hanselman et al.,
2011). Vinillos is located between two active volcanos, Antisana
(5704 m asl) and Sumaco (3990 m asl) (Fig. 1) (Hall et al., 2017). The
co-occurrence of charcoal and tephra material throughout the Vinillos
sediments suggests that volcanic eruptions were the likely ignition
source of regional fires and that charcoal was transported to Vinillos
during volcanic eruption events. The minimal macro-charcoal remains
indicate that fires were not a major driver of vegetation disturbance
within glacial montane forest environments.

5.3.3. Volcanic activity
The response of an ecosystem to volcanic activity is linked closely to

the type and quantity of volcanic material deposited. The volcanic te-
phra layers deposited at Vinillos are considered to be air fall deposits
due to their fine-grained nature, however, some of the deposits may
also have their origin in fine-grained material winnowed from pyr-
oclastic flows. Each of the tephra layers contains low concentrations of
pollen (15,000–48,000 grains per cm3) and NPPs (< 3400 grains per
cm3) similar in composition to their adjacent organic layers (Figs. 5 and
6) suggesting the period of deposition was long enough to incorporate a
representative palynomorph signal or that the palynomorphs were
transported within the tephra material.

The presence of three tephra layers within one pollen zone (VIN 1)
indicates that the vegetation assemblage changed little after the de-
position of T4 and T3. An increase in the proportion of Alnus pollen, a
typical pioneer species in the Andes (Grau and Veblen, 2000; Weng
et al., 2004a) within and adjacent to T4 and T3 indicates some dis-
turbance of the forest community took place, but that no overall change
in vegetation composition occurred. Pollen zone VIN 2 occurs im-
mediately after the largest volcanic tephra layer (T2, 40 cm) and con-
tains a change in the palynomorph assemblage to one characterised by
high concentrations of Weinmannia, Melastomataceae and Ilex pollen,
but an absence of fungal NPPs (Fig. 8). This shift in pollen assemblage
and loss of fungal NPPs is interpreted to indicate that the amount of
volcanic ash deposited by T1, T2 and T3 caused the population dy-
namics and edaphic factors of the local area to change. Deposition of
the youngest tephra layer (T1) coincides with a return to an assemblage
comparable to that of VIN 1 with an increase in Alnus, Hedyosmum and
Myrica (Fig. 5). Changes in the pollen zones through the Vinillos section
broadly correspond to changes in sediment associated with the in-
troduction of volcanic tephra material, indicating that volcanic activity
is likely to have been an important driver of landscape-scale ecosystem
dynamics in glacial montane forest on the eastern Andean flank.

The occurrence of these non-climatic landscape-scale drivers (vol-
canic events, fires and herbivores) in conjunction with disturbance
events which occur in modern montane environments, e.g. landslides,
forest die-back, tree fall events, and presumably occurred in the glacial
landscape allowed for stochastic local disturbances in the vegetation
assemblages to occur (Fig. 8). These dynamic landscape-scale processes
led to local ephemeral vegetation assemblages occurring within the
wider montane forest ecosystem. The persistent local level vegetation
instability occurring through glacial climate regimes may have allowed
for individual species to react quicker to climate driven vegetation
change during the transition to an inter-glacial climate regime and
potentially to cope with continued anthropogenic landscape degrada-
tion and future changes in climate.

6. Conclusions

The composition of the palynological assemblages through the
Vinillos section indicates a stable regional vegetation community oc-
curred on the eastern Andean flank of northern Ecuador during the last
glacial period ca. 45–42 ka, despite landscape-scale processes driving
local changes in forest structure. Deposition of volcanic ash was found
to be the primary non-climate driver of landscape-scale changes in
vegetation populations. Local vegetation population dynamics were
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driven primarily by these stochastic disturbance events, maintaining
local vegetation heterogeneity during the last glacial period. No-ana-
logue pollen assemblages from Vinillos indicate the presence of glacial
forest communities that differ compositionally to the tropical montane
cloud forest vegetation that occurs today, with higher abundances of
characteristic montane taxa i.e. Podocarpus, Alnus, Hedyosmum and
Weinmannina indicating cooler conditions. The presence of obligate
coprophilous fungi e.g. Sporormiella, provides evidence for the existence
of herbivores within the glacial forest, however, low concentrations
suggest they would have had a negligible impact on vegetation dy-
namics. The association between volcanic sediments and charcoal
suggests that volcanic eruptions were the principle source of ignition in
the Andes prior to the arrival of humans. Micro-charcoal observed in
the record was likely transported from extra-local regions which were
more susceptible to burning, e.g. Páramo, or entrained within ash falls.
The paucity of macro-charcoal indicates that local fires were absent, or
rare, within glacial montane forests.
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