2,608 research outputs found
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring structure growth using passive galaxies
We explore the benefits of using a passively evolving population of galaxies
to measure the evolution of the rate of structure growth between z=0.25 and
z=0.65 by combining data from the SDSS-I/II and SDSS-III surveys. The
large-scale linear bias of a population of dynamically passive galaxies, which
we select from both surveys, is easily modeled. Knowing the bias evolution
breaks degeneracies inherent to other methodologies, and decreases the
uncertainty in measurements of the rate of structure growth and the
normalization of the galaxy power-spectrum by up to a factor of two. If we
translate our measurements into a constraint on sigma_8(z=0) assuming a
concordance cosmological model and General Relativity (GR), we find that using
a bias model improves our uncertainty by a factor of nearly 1.5. Our results
are consistent with a flat Lambda Cold Dark Matter model and with GR.Comment: Accepted for publication in MNRAS (clarifications added, results and
conclusions unchanged
Understanding the faint red galaxy population using large-scale clustering measurements from SDSS DR7
We use data from the SDSS to investigate the evolution of the large-scale
galaxy bias as a function of luminosity for red galaxies. We carefully consider
correlation functions of galaxies selected from both photometric and
spectroscopic data, and cross-correlations between them, to obtain multiple
measurements of the large-scale bias. We find, for our most robust analyses, a
strong increase in bias with luminosity for the most luminous galaxies, an
intermediate regime where bias does not evolve strongly over a range of two
magnitudes in galaxy luminosity, and no evidence for an upturn in bias for
fainter red galaxies. Previous work has found an increase in bias to low
luminosities that has been widely interpreted as being caused by a strong
preference for red dwarf galaxies to be satellites in the most massive halos.
We can recover such an upturn in bias to faint luminosities if we push our
measurements to small scales, and include galaxy clustering measurements along
the line-of-sight, where we expect non-linear effects to be the strongest. The
results that we expect to be most robust suggest that the low luminosity
population of red galaxies is not dominated by satellite galaxies occupying the
most massive haloes.Comment: Matches version accepted by MNRA
Methods for Rapidly Processing Angular Masks of Next-Generation Galaxy Surveys
As galaxy surveys become larger and more complex, keeping track of the
completeness, magnitude limit, and other survey parameters as a function of
direction on the sky becomes an increasingly challenging computational task.
For example, typical angular masks of the Sloan Digital Sky Survey contain
about N=300,000 distinct spherical polygons. Managing masks with such large
numbers of polygons becomes intractably slow, particularly for tasks that run
in time O(N^2) with a naive algorithm, such as finding which polygons overlap
each other. Here we present a "divide-and-conquer" solution to this challenge:
we first split the angular mask into predefined regions called "pixels," such
that each polygon is in only one pixel, and then perform further computations,
such as checking for overlap, on the polygons within each pixel separately.
This reduces O(N^2) tasks to O(N), and also reduces the important task of
determining in which polygon(s) a point on the sky lies from O(N) to O(1),
resulting in significant computational speedup. Additionally, we present a
method to efficiently convert any angular mask to and from the popular HEALPix
format. This method can be generically applied to convert to and from any
desired spherical pixelization. We have implemented these techniques in a new
version of the mangle software package, which is freely available at
http://space.mit.edu/home/tegmark/mangle/, along with complete documentation
and example applications. These new methods should prove quite useful to the
astronomical community, and since mangle is a generic tool for managing angular
masks on a sphere, it has the potential to benefit terrestrial mapmaking
applications as well.Comment: New version 2.1 of the mangle software now available at
http://space.mit.edu/home/tegmark/mangle/ - includes galaxy survey masks and
galaxy lists for the latest SDSS data release and the 2dFGRS final data
release as well as extensive documentation and examples. 14 pages, 9 figures,
matches version accepted by MNRA
Neutrino masses from clustering of red and blue galaxies: a test of astrophysical uncertainties
Combining measurements of the galaxy power spectrum and the cosmic microwave
background (CMB) is a powerful means of constraining the summed mass of
neutrino species sum(m_nu), but is subject to systematic uncertainties due to
non-linear structure formation, redshift-space distortions and galaxy bias. We
empirically test the robustness of neutrino mass results to these effects by
separately analyzing power spectra of red and blue galaxies from the Sloan
Digital Sky Survey (SDSS-II) Data Release 7 (DR7), combined with the CMB
five-year Wilkinson Microwave Anisotropy Probe (WMAP5) data. We consider
fitting for a range of maximum wavenumber k using twelve different galaxy bias
models. For example, using a new model based on perturbation theory and
including redshift space distortions (Saito et al. 2009), the all-galaxy power
spectrum combined with WMAP5 for a wavenumber range of k<0.2 Mpc/h yields 95%
CL sum(m_nu)<0.46 eV. The red and blue galaxy power spectra give 0.41 and 0.63
eV respectively for this model. Using mock catalogues, we find the expected
difference in these limits assuming a true neutrino mass of zero is 0.10 + or -
0.14 eV. Thus the difference of 0.22 eV between upper limits on neutrino mass
for red and blue galaxies is approximately 1 sigma from the expected value. We
find similar results for the other models and k ranges tested. This indicates
good agreement for current data but hints at possible issues for
next-generation surveys. Being able to perform such systematic tests is
advantageous, and future surveys would benefit by including broad galaxy
populations and luminosities that enable such a decomposition.Comment: 15 pages, 6 figures, matches version published in MNRA
Recommended from our members
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function
We obtain constraints on cosmological parameters from the spherically
averaged redshift-space correlation function of the CMASS Data Release 9 (DR9)
sample of the Baryonic Oscillation Spectroscopic Survey (BOSS). We combine this
information with additional data from recent CMB, SN and BAO measurements. Our
results show no significant evidence of deviations from the standard
flat-Lambda CDM model, whose basic parameters can be specified by Omega_m =
0.285 +- 0.009, 100 Omega_b = 4.59 +- 0.09, n_s = 0.96 +- 0.009, H_0 = 69.4 +-
0.8 km/s/Mpc and sigma_8 = 0.80 +- 0.02. The CMB+CMASS combination sets tight
constraints on the curvature of the Universe, with Omega_k = -0.0043 +- 0.0049,
and the tensor-to-scalar amplitude ratio, for which we find r < 0.16 at the 95
per cent confidence level (CL). These data show a clear signature of a
deviation from scale-invariance also in the presence of tensor modes, with n_s
<1 at the 99.7 per cent CL. We derive constraints on the fraction of massive
neutrinos of f_nu < 0.049 (95 per cent CL), implying a limit of sum m_nu < 0.51
eV. We find no signature of a deviation from a cosmological constant from the
combination of all datasets, with a constraint of w_DE = -1.033 +- 0.073 when
this parameter is assumed time-independent, and no evidence of a departure from
this value when it is allowed to evolve as w_DE(a) = w_0 + w_a (1 - a). The
achieved accuracy on our cosmological constraints is a clear demonstration of
the constraining power of current cosmological observations.Comment: 26 pages, 15 figures. Minor changes to match version accepted by
MNRA
Interferometric Tests of Teleportation
We investigate a direct test of teleportation efficacy based on a
Mach-Zehnder interferometer. The analysis is performed for continuous variable
teleportation of both discrete and continuous observables
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering
We analyze the anisotropic clustering of massive galaxies from the Sloan
Digital Sky Survey III Baryon Oscillation Spectroscopic Survey (BOSS) Data
Release 9 (DR9) sample, which consists of 264,283 galaxies in the redshift
range 0.43 < z < 0.7 spanning 3,275 square degrees. Both peculiar velocities
and errors in the assumed redshift-distance relation ("Alcock-Paczynski
effect") generate correlations between clustering amplitude and orientation
with respect to the line-of-sight. Together with the sharp baryon acoustic
oscillation (BAO) standard ruler, our measurements of the broadband shape of
the monopole and quadrupole correlation functions simultaneously constrain the
comoving angular diameter distance (2190 +/- 61 Mpc) to z=0.57, the Hubble
expansion rate at z=0.57 (92.4 +/- 4.5 km/s/Mpc), and the growth rate of
structure at that same redshift (d sigma8/d ln a = 0.43 +/- 0.069). Our
analysis provides the best current direct determination of both DA and H in
galaxy clustering data using this technique. If we further assume a LCDM
expansion history, our growth constraint tightens to d sigma8/d ln a = 0.415
+/- 0.034. In combination with the cosmic microwave background, our
measurements of DA, H, and growth all separately require dark energy at z >
0.57, and when combined imply \Omega_{\Lambda} = 0.74 +/- 0.016, independent of
the Universe's evolution at z<0.57. In our companion paper (Samushia et al.
prep), we explore further cosmological implications of these observations.Comment: 19 pages, 11 figures, submitted to MNRAS, comments welcom
- …
