7 research outputs found

    Small RNAs are trafficked from the epididymis to developing mammalian sperm [preprint]

    Get PDF
    RNAs present in mature mammalian sperm are delivered to the zygote at fertilization, where they have the potential to affect early development. The biogenesis of the small RNA payload of mature sperm is therefore of great interest, as it may be a target of signaling pathways linking paternal conditions to offspring phenotype. Recent studies have suggested the surprising hypothesis that the small RNA payload carried by mature sperm may include RNAs that were not synthesized during testicular spermatogenesis, but that are instead delivered to sperm during the process of post-testicular maturation in the epididymis. To further test this hypothesis, we characterized small RNA dynamics during testicular and post-testicular germ cell maturation in mice. We show that purified testicular germ cell populations, including mature testicular spermatozoa, carry extremely low levels of tRNA fragments (tRFs), and that tRFs become highly abundant only after sperm have entered the epididiymis. The process of small RNA delivery to sperm can be recapitulated in vitro, as caput epididymosomes deliver small RNAs including tRFs and microRNAs to mature testicular spermatozoa. Finally, to definitively identify the tissue of origin for small RNAs in sperm, we carried out tissue-specific metabolic labeling of RNAs in intact mice, finding that mature sperm carry small RNAs that were originally synthesized in the somatic cells of the epididymis. Taken together, our data demonstrates that soma-germline small RNA transfer occurs in male mammals, most likely via vesicular transport from the epididymis to maturing sperm

    Cancers / Loss of STAT3 in lymphoma relaxes NK cell-mediated tumor surveillance

    No full text
    The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK) cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN- and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.(VLID)217340
    corecore