337 research outputs found

    Effect of Seven-Valent Pneumococcal Conjugate Vaccine on Staphylococcus aureus Colonisation in a Randomised Controlled Trial

    Get PDF
    Background: Heptavalent pneumococcal conjugate vaccine (PCV7) shifts nasopharyngeal colonisation with vaccine serotype pneumococci towards nonvaccine serotypes. Because of the reported negative association of vaccine serotype pneumococci and Staphylococcus aureus in the nasopharynx, we explored the effect of PCV7 on nasopharyngeal colonisation with S. aureus in children and parents. Methodology/Principal Findings: This study was part of a randomised controlled trial on the effect of PCV7 on pneumococcal carriage, enrolling healthy newborns who were randomly assigned (1: 1: 1) to receive PCV7 (1) at 2 and 4 months of age (2) at 2, 4 and 11 months or (3) no PCV7 (controls). Nasopharyngeal colonisation of S. aureus was a planned secondary outcome. Nasopharyngeal swabs were obtained from all children over a 2-year period with 6-months interval and from one parent at the child's age of 12 and 24 months and cultured for Streptococcus pneumoniae and S. aureus. Between July 2005 and February 2006, 1005 children were enrolled and received either 2-doses of PCV7 (n = 336), 2+1-doses (336) or no dose (n = 333) before PCV7 implementation in the Dutch national immunization program. S. aureus colonisation had doubled in children in the 2+1-dose group at 12 months of age compared with unvaccinated controls (10.1% versus 5.0%; p = 0.019). A negative association for co-colonisation of S. pneumoniae and S. aureus was observed for both vaccine serotype (adjusted odds ratio (aOR) 0.53, 95% confidence interval (CI) 0.38-0.74) and nonvaccine serotype pneumococci (aOR 0.67, 95% CI 0.52-0.88). Conclusions/Significance: PCV7 induces a temporary increase in S. aureus colonisation in children around 12 months of age after a 2+1-dose PCV7 schedule. The potential clinical consequences are unknown and monitoring is warranted

    Neutralising capacity against Delta and other variants of concern following Comirnaty vaccination in health care workers, Israel

    Get PDF
    Since its emergence, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been responsible for more than 170 million cases and 3.5 million deaths. During December 2020 the Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer, Mainz, Germany/New York, United States (US)) vaccine was approved by the US Food and Drug Administration and shown to be 95% efficacious in preventing symptomatic coronavirus disease 2019 (COVID-19). Clinical and real-world data demonstrated 95% effectiveness of the mRNA- based vaccine against the original SARS-CoV-2 and the Alpha variant. Since December 2020, several SARS-CoV-2 variants have emerged and were classified by the World Health Organization (WHO) as variants of concern (VOC): Alpha (Phylogenetic Assignment of Named Global Outbreak (Pango) lineage designation B.1.1.7), first detected in the United Kingdom (UK), Beta (B.1.351) first documented in South Africa [5] and Gamma (P.1) initially detected in Brazil. Most recently, in April 2021, the Delta (B.1.617.2) variant was identified in India and classified on May 11 as VOC due to its fast spread and potential immune escape. Here, we describe the neutralising response of sera from healthcare workers without prior SARS-CoV-2 infection following a second vaccine dose against viral isolates of the Delta VOC, and compared it to the response against isolates of the original, the Alpha, Beta and Gamma VOCs

    Changing trends in β-hemolytic streptococcal bacteremia in Manitoba, Canada:2007-2012

    Get PDF
    OBJECTIVES: European surveillance studies have reported an increasing incidence of β-hemolytic group G streptococcal bacteremia, but no studies have evaluated trends in β-hemolytic streptococcal bacteremia in North America. METHODS: We reviewed bacteremic episodes and positive throat swab cultures from two tertiary care centers in Manitoba, Canada, from January 2007 to December 2012. RESULTS: During the study period, 19 864 bacteremic episodes, and 9948 positive throat swabs were identified. There were 1025 (5.16%) bacteremic episodes attributable to β-hemolytic streptococci: 425 (2.03%), 339 (1.71%), 62 (0.31%), and 199 (0.95%) to β-hemolytic groups A, B, C, and G streptococci, respectively. From 2007 to 2012, there were significant increases in the proportion of bacteremia attributable to β-hemolytic streptococci in general (6.32% vs. 4.02%; p<0.0001; linear trend test, p<0.0001), and to groups G (1.49% vs. 0.43%; p<0.0001; linear trend test, p<0.0001) and C (0.58% vs. 0.13%; p=0.0068; linear trend test, p=0.0105) β-hemolytic streptococci in particular. Bacteremia attributable to groups A and B β-hemolytic streptococci and Streptococcus pneumoniae were unchanged. There were no changes in the distribution of β-hemolytic streptococcal groups among throat swabs. CONCLUSIONS: Bacteremia attributable to β-hemolytic groups G and C streptococci increased in Manitoba, Canada. Further study of the factors underlying these changes is required

    Killing niche competitors by remote-control bacteriophage induction

    Get PDF
    A surprising example of interspecies competition is the production by certain bacteria of hydrogen peroxide at concentrations that are lethal for others. A case in point is the displacement of Staphylococcus aureus by Streptococcus pneumoniae in the nasopharynx, which is of considerable clinical significance. How it is accomplished, however, has been a great mystery, because H2O2 is a very well known disinfectant whose lethality is largely due to the production of hyperoxides through the abiological Fenton reaction. In this report, we have solved the mystery by showing that H2O2 at the concentrations typically produced by pneumococci kills lysogenic but not nonlysogenic staphylococci by inducing the SOS response. The SOS response, a stress response to DNA damage, not only invokes DNA repair mechanisms but also induces resident prophages, and the resulting lysis is responsible for H2O2 lethality. Because the vast majority of S. aureus strains are lysogenic, the production of H2O2 is a very widely effective antistaphylococcal strategy. Pneumococci, however, which are also commonly lysogenic and undergo SOS induction in response to DNA-damaging agents such as mitomycin C, are not SOS-induced on exposure to H2O2. This is apparently because they are resistant to the DNAdamaging effects of the Fenton reaction. The production of an SOS-inducing signal to activate prophages in neighboring organisms is thus a rather unique competitive strategy, which we suggest may be in widespread use for bacterial interference. However, this strategy has as a by-product the release of active phage, which can potentially spread mobile genetic elements carrying virulence genes.This work was supported by Comisión Interministerial de Ciencia y Tecnología Grants BIO2005-08399-C02-02, BIO2008-05284-C02-02, and BIO2008-00642-E/C; Cardenal Herrera-CEU University Grants PRCEUUCH25/ 08 and Copernicus program; and by Conselleria de Agricultura, Pesca i Alimentació (CAPiA), and from the Generalitat Valenciana (ACOMP07/258) (J.R.P.). L.S. and D.V. were supported by Cardenal Herrera-CEU University fellowships

    Long-Term Effects of Pneumococcal Conjugate Vaccine on Nasopharyngeal Carriage of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis

    Get PDF
    BACKGROUND: Shifts in pneumococcal serotypes following introduction of 7-valent pneumococcal conjugate vaccine (PCV-7) may alter the presence of other bacterial pathogens co-inhabiting the same nasopharyngeal niche. METHODOLOGY/PRINCIPAL FINDINGS: Nasopharyngeal prevalence rates of S. pneumoniae, S. aureus, H. influenzae and M. catarrhalis were investigated before, 3 and 4.5 years after introduction of PCV-7 in the national immunisation program in children at 11 and 24 months of age, and parents of 24-month-old children (n≈330/group) using conventional culture methods. Despite a virtual disappearance of PCV-7 serotypes over time, similar overall pneumococcal rates were observed in all age groups, except for a significant reduction in the 11-month-old group (adjusted Odds Ratio after 4.5 years 0.48, 95% Confidence Interval 0.34-0.67). Before, 3 and 4.5 years after PCV-7 implementation, prevalence rates of S. aureus were 5%, 9% and 14% at 11 months of age (3.59, 1.90-6.79) and 20%, 32% and 34% in parents (1.96, 1.36-2.83), but remained similar at 24 months of age, respectively. Prevalence rates of H. influenzae were 46%, 65% and 65% at 11 months (2.22, 1.58-3.13), 52%, 73% and 76% at 24 months of age (2.68, 1.88-3.82) and 23%, 30% and 40% in parents (2.26, 1.58-3.33), respectively. No consistent changes in M. catarrhalis carriage rates were observed over time. CONCLUSIONS/SIGNIFICANCE: In addition to large shifts in pneumococcal serotypes, persistently higher nasopharyngeal prevalence rates of S. aureus and H. influenzae were observed among young children and their parents after PCV-7 implementation. These findings may have implications for disease incidence and antibiotic treatment in the post-PCV era

    Nasopharyngeal Bacterial Colonization and Gene Polymorphisms of Mannose-Binding Lectin and Toll-Like Receptors 2 and 4 in Infants

    Get PDF
    BACKGROUND: Human nasopharynx is often colonized by potentially pathogenic bacteria. Gene polymorphisms in mannose-binding lectin (MBL), toll-like receptor (TLR) 2 and TLR4 have been reported. The present study aimed to investigate possible association between nasopharyngeal bacterial colonization and gene polymorphisms of MBL, TLR2 and TLR4 in healthy infants. METHODOLOGY/PRINCIPAL FINDINGS: From August 2008 to June 2010, 489 nasopharyngeal swabs and 412 blood samples were taken from 3-month-old healthy Finnish infants. Semi-quantitative culture was performed and pyrosequencing was used for detection of polymorphisms in MBL structural gene at codons 52, 54, and 57, TLR2 Arg753Gln and TLR4 Asp299Gly. Fifty-nine percent of subjects were culture positive for at least one of the four species: 11% for Streptococcus pneumoniae, 23% for Moraxella catarrhalis, 1% for Haemophilus influenzae and 25% for Staphylococcus aureus. Thirty-two percent of subjects had variant types in MBL, 5% had polymorphism of TLR2, and 18% had polymorphism of TLR4. Colonization rates of S. pneumoniae and S. aureus were significantly higher in infants with variant types of MBL than those with wild type (p = .011 and p = .024). Colonization rates of S. aureus and M. catarrhalis were significantly higher in infants with polymorphisms of TLR2 and of TLR4 than those without (p = .027 and p = .002). CONCLUSIONS: Our study suggests that there is an association between nasopharyngeal bacterial colonization and genetic variation of MBL, TLR2 and TLR4 in young infants. This finding supports a role for these genetic variations in susceptibility of children to respiratory infections

    Methicillin-resistant Staphylococcus aureus in Neonatal Intensive Care Unit

    Get PDF
    A neonatal intensive care unit outbreak was caused by a strain of methicillin-resistant Staphylococcus aureus previously found in the community (ST45-MRSA-IV). Fifteen infected neonates were identified, 2 of whom died. This outbreak illustrates how a rare community pathogen can rapidly spread through nosocomial transmission

    Pneumococcal Gene Complex Involved in Resistance to Extracellular Oxidative Stress

    Get PDF
    Streptococcus pneumoniae is a Gram-positive bacterium which is a member of the normal human nasopharyngeal flora but can also cause serious disease such as pneumonia, bacteremia, and meningitis. Throughout its life cycle, S. pneumoniae is exposed to significant oxidative stress derived from endogenously produced hydrogen peroxide (H2O2) and from the host through the oxidative burst. How S. pneumoniae, an aerotolerant anaerobic bacterium that lacks catalase, protects itself against hydrogen peroxide stress is still unclear. Bioinformatic analysis of its genome identified a hypothetical open reading frame belonging to the thiol-specific antioxidant (TlpA/TSA) family, located in an operon consisting of three open reading frames. For all four strains tested, deletion of the gene resulted in an approximately 10-fold reduction in survival when strains were exposed to external peroxide stress. However, no role for this gene in survival of internal superoxide stress was observed. Mutagenesis and complementation analysis demonstrated that all three genes are necessary and sufficient for protection against oxidative stress. Interestingly, in a competitive index mouse pneumonia model, deletion of the operon had no impact shortly after infection but was detrimental during the later stages of disease. Thus, we have identified a gene complex involved in the protection of S. pneumoniae against external oxidative stress, which plays an important role during invasive disease.
    corecore