55 research outputs found

    Temperature-Dependent Sex Determination under Rapid Anthropogenic Environmental Change: Evolution at a Turtle’s Pace?

    Get PDF
    Organisms become adapted to their environment by evolving through natural selection, a process that generally transpires over many generations. Currently, anthropogenically driven environmental changes are occurring orders of magnitude faster than they did prior to human influence, which could potentially outpace the ability of some organisms to adapt. Here, we focus on traits associated with temperature-dependent sex determination (TSD), a classic polyphenism, in a model turtle species to address the evolutionary potential of species with TSD to respond to rapid climate change. We show, first, that sex-ratio outcomes in species with TSD are sensitive to climatic variation. We then identify the evolutionary potential, in terms of heritability, of TSD and quantify the evolutionary potential of 3 key traits involved in TSD: pivotal temperature, maternal nest-site choice, and nesting phenology. We find that these traits display different patterns of adaptive potential: pivotal temperature exhibits moderate heritable variation, whereas nest-site choice and nesting phenology, with considerable phenotypic plasticity, have only modest evolutionary potential to alter sex ratios. Therefore, the most likely response of species with TSD to anthropogenically induced climate change may be a combination of microevolution in thermal sensitivity of the sex-determining pathway and of plasticity in maternal nesting behavior

    Genomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis.

    Get PDF
    Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but virulence shifts can occur over short timescales when Bd is maintained in the laboratory. We leveraged changes in Bd virulence over multiple generations of passage to better understand mechanisms of pathogen virulence. We conducted whole-genome resequencing of two samples of the same Bd isolate, differing only in passage history, to identify genomic processes associated with virulence attenuation. The isolate with shorter passage history (and greater virulence) had greater chromosome copy numbers than the isolate maintained in culture for longer, suggesting that virulence attenuation may be associated with loss of chromosome copies. Our results suggest that genomic processes proposed as mechanisms for rapid evolution in Bd are correlated with virulence attenuation in laboratory culture within a single lineage of Bd. Moreover, these genomic processes can occur over extremely short timescales. On a practical level, our results underscore the importance of immediately cryo-archiving new Bd isolates and using fresh isolates, rather than samples cultured in the laboratory for long periods, for laboratory infection experiments. Finally, when attempting to predict disease outcomes for this ecologically important pathogen, it is critical to consider existing variation in virulence among isolates and the potential for shifts in virulence over short timescales

    Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks

    Get PDF
    [1] Northern Hemisphere summer temperatures over the past 8000 years have been paced by the slow decrease in summer insolation resulting from the precession of the equinoxes. However, the causes of superposed century-scale cold summer anomalies, of which the Little Ice Age (LIA) is the most extreme, remain debated, largely because the natural forcings are either weak or, in the case of volcanism, short lived. Here we present precisely dated records of ice-cap growth from Arctic Canada and Iceland showing that LIA summer cold and ice growth began abruptly between 1275 and 1300 AD, followed by a substantial intensification 1430– 1455 AD. Intervals of sudden ice growth coincide with two of the most volcanically perturbed half centuries of the past mil-lennium. A transient climate model simulation shows that explosive volcanism produces abrupt summer cooling at these times, and that cold summers can be maintained by sea-ice/ ocean feedbacks long after volcanic aerosols are removed. Our results suggest that the onset of the LIA can be linked to an unusual 50-year-long episode with four large sulfur-rich explosive eruptions, each with global sulfate loading>60 Tg. The persistence of cold summers is best explained by conse-quent sea-ice/ocean feedbacks during a hemispheric summer insolation minimum; large changes in solar irradiance are not required. Citation: Miller, G. H., et al. (2012), Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocea

    Road avoidance and its energetic consequences for reptiles

    Get PDF
    CITATION: Paterson, J. E., et al. 2019. Road avoidance and its energetic consequences for reptiles. Ecology and Evolution, 9(17):9794-9803, doi:10.1002/ece3.5515.The original publication is available at https://onlinelibrary.wiley.comRoads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road-adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5515Publisher's versio

    Optimism for mitigation of climate warming impacts for sea turtles through nest shading and relocation

    Get PDF
    Increasing incubation temperatures may threaten the viability of sea turtle populations. We explored opportunities for decreasing incubation temperatures at a Caribbean rookery with extreme female-biased hatchling production. To investigate the effect of artificial shading, temperatures were measured under simple materials (white sheet, white sand, palm leaves). To test natural drivers of incubation temperature, temperatures were measured at average nest depths with shading on two beaches. Results from a pilot experiment suggest the most effective material was palm leaves. Shading decreased temperatures by a mean of 0.60 °C (SE = 0.10 °C, N = 20). Variation between beaches averaged 1.88 °C (SE = 0.13 °C, N = 20). We used long-term rookery data combined with experimental data to estimate the effect on sex ratio: relocation and shading could shift ratios from current ranges (97-100% female) to 60-90% female. A conservation mitigation matrix summarises our evidence that artificial shading and nest relocation are effective conservation strategies to mitigate impacts of climate warming for sea turtles

    Incorporating non-equilibrium dynamics into demographic history inferences of a migratory marine species

    Get PDF
    ELC was supported while writing this paper by a EU Horizon 2020 Marie Slodowska Curie Fellowship, project BEHAVIOUR-CONNECT, by a Newton Fellowship from the Royal Society of London and Bayesian statistical training was supported by National Science Foundation (award DEB- 1145200). Laboratory analyses conducted by ELC were funded by a small grant from the British Ecological Society 5076 / 6118 and Bayesian analysis was supported by training from the National Science Foundation under Grant No. DEB-1145200. OEG was supported by the Marine Alliance for Science and Technology for Scotland (MASTS) funded by the Scottish Founding Council (grant reference HR09011). Genetic data from the South African right whale samples were generated by MB and PJP with the support of UC Berkeley, University of Stockholm and University of Groningen. Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit which is funded by a Wellcome Trust ISSF award.Understanding how dispersal and gene flow link geographically separated populations over evolutionary history is challenging, particularly in migratory marine species. In southern right whales (SRWs, Eubalaena australis), patterns of genetic diversity are likely influenced by the glacial climate cycle and recent history of whaling. Here we use a dataset of mitochondrial DNA (mtDNA) sequences (n=1,327) and nuclear markers (17 microsatellite loci, n=222) from major wintering grounds to investigate circumpolar population structure, historical demography, and effective population size. Analyses of nuclear genetic variation identify two population clusters that correspond to the South Atlantic and Indo-Pacific ocean basins that have similar effective breeder estimates. In contrast, all wintering grounds show significant differentiation for mtDNA, but no sex-biased dispersal was detected using the microsatellite genotypes. An approximate Bayesian computation (ABC) approach with microsatellite markers compared scenarios with gene flow through time, or isolation and secondary contact between ocean basins, while modeling declines in abundance linked to whaling. Secondary-contact scenarios yield the highest posterior probabilities, implying that populations in different ocean basins were largely isolated and came into secondary contact within the last 25,000 years, but the role of whaling in changes in genetic diversity and gene flow over recent generations could not be resolved. We hypothesis that these findings are driven by factors that promote isolation, such as female philopatry, and factors that could promote dispersal, such oceanographic changes. These findings highlight the application of ABC approaches to infer connectivity in mobile species with complex population histories and currently low levels of differentiation.PostprintPeer reviewe
    • 

    corecore