142 research outputs found

    Aging, working memory capacity and the proactive control of recollection:An event-related potential study

    Get PDF
    The present study investigated the role of working memory capacity (WMC) in the control of recollection in young and older adults. We used electroencephalographic event-related potentials (ERPs) to examine the effects of age and of individual differences in WMC on the ability to prioritize recollection according to current goals. Targets in a recognition exclusion task were words encoded using two alternative decisions. The left parietal ERP old/new effect was used as an electrophysiological index of recollection, and the selectivity of recollection measured in terms of the difference in its magnitude according to whether recognized items were targets or non-targets. Young adults with higher WMC showed greater recollection selectivity than those with lower WMC, while older adults showed nonselective recollection which did not vary with WMC. The data suggest that aging impairs the ability to engage cognitive control effectively to prioritize what will be recollected

    When is working memory important for arithmetic?: the impact of strategy and age

    Get PDF
    Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition

    Fibronectin Unfolding Revisited: Modeling Cell Traction-Mediated Unfolding of the Tenth Type-III Repeat

    Get PDF
    Fibronectin polymerization is essential for the development and repair of the extracellular matrix. Consequently, deciphering the mechanism of fibronectin fibril formation is of immense interest. Fibronectin fibrillogenesis is driven by cell-traction forces that mechanically unfold particular modules within fibronectin. Previously, mechanical unfolding of fibronectin has been modeled by applying tensile forces at the N- and C-termini of fibronectin domains; however, physiological loading is likely focused on the solvent-exposed RGD loop in the 10th type-III repeat of fibronectin (10FNIII), which mediates binding to cell-surface integrin receptors. In this work we used steered molecular dynamics to study the mechanical unfolding of 10FNIII under tensile force applied at this RGD site. We demonstrate that mechanically unfolding 10FNIII by pulling at the RGD site requires less work than unfolding by pulling at the N- and C- termini. Moreover, pulling at the N- and C-termini leads to 10FNIII unfolding along several pathways while pulling on the RGD site leads to a single exclusive unfolding pathway that includes a partially unfolded intermediate with exposed hydrophobic N-terminal β-strands – residues that may facilitate fibronectin self-association. Additional mechanical unfolding triggers an essential arginine residue, which is required for high affinity binding to integrins, to move to a position far from the integrin binding site. This cell traction-induced conformational change may promote cell detachment after important partially unfolded kinetic intermediates are formed. These data suggest a novel mechanism that explains how cell-mediated forces promote fibronectin fibrillogenesis and how cell surface integrins detach from newly forming fibrils. This process enables cells to bind and unfold additional fibronectin modules – a method that propagates matrix assembly

    Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics

    Targeting the Wolbachia Cell Division Protein FtsZ as a New Approach for Antifilarial Therapy

    Get PDF
    Filarial nematode parasites are responsible for a number of devastating diseases in humans and animals. These include lymphatic filariasis and onchocerciasis that afflict 150 million people in the tropics and threaten the health of over one billion. The parasites possess intracellular bacteria, Wolbachia, which are needed for worm survival. Clearance of these bacteria with certain antibiotics leads to parasite death. These findings have pioneered the approach of using antibiotics to treat and control filarial infections. In the present study, we have investigated the cell division process in Wolbachia for new drug target discovery. We have identified the essential cell division protein FtsZ, which has a GTPase activity, as an attractive Wolbachia drug target. We describe the molecular characterization and catalytic properties of the enzyme and demonstrate that the GTPase activity is inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. We also found that berberine was effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel antibiotic approach for controlling filarial infection

    Does working memory training have to be adaptive?

    Get PDF
    This study tested the common assumption that, to be most effective, working memory (WM) training should be adaptive (i.e., task difficulty is adjusted to individual performance). Indirect evidence for this assumption stems from studies comparing adaptive training to a condition in which tasks are practiced on the easiest level of difficulty only [cf. Klingberg (Trends Cogn Sci 14:317-324, 2010)], thereby, however, confounding adaptivity and exposure to varying task difficulty. For a more direct test of this hypothesis, we randomly assigned 130 young adults to one of the three WM training procedures (adaptive, randomized, or self-selected change in training task difficulty) or to an active control group. Despite large performance increases in the trained WM tasks, we observed neither transfer to untrained structurally dissimilar WM tasks nor far transfer to reasoning. Surprisingly, neither training nor transfer effects were modulated by training procedure, indicating that exposure to varying levels of task difficulty is sufficient for inducing training gains

    Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the Kepler 2 Observations

    Get PDF
    Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically confirmed Type Ia supernova (SN Ia) observed in the Kepler field. The Kepler data revealed an excess emission in its early light curve, allowing us to place interesting constraints on its progenitor system. Here we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3 ± 0.3 days and Δm 15(B) = 0.96 ± 0.03 mag, but it seems to have bluer B − V colors. We construct the "UVOIR" bolometric light curve having a peak luminosity of 1.49 × 1043 erg s−1, from which we derive a nickel mass as 0.55 ± 0.04 M ⊙ by fitting radiation diffusion models powered by centrally located 56Ni. Note that the moment when nickel-powered luminosity starts to emerge is +3.85 days after the first light in the Kepler data, suggesting other origins of the early-time emission, e.g., mixing of 56Ni to outer layers of the ejecta or interaction between the ejecta and nearby circumstellar material or a nondegenerate companion star. The spectral evolution of SN 2018oh is similar to that of a normal SN Ia but is characterized by prominent and persistent carbon absorption features. The C ii features can be detected from the early phases to about 3 weeks after the maximum light, representing the latest detection of carbon ever recorded in an SN Ia. This indicates that a considerable amount of unburned carbon exists in the ejecta of SN 2018oh and may mix into deeper layers

    K2 Observations of SN 2018oh Reveal a Two-Component Rising Light Curve for a Type Ia Supernova

    Get PDF
    We present an exquisite, 30-min cadence Kepler (K2) light curve of the Type Ia supernova (SN Ia) 2018oh (ASASSN-18bt), starting weeks before explosion, covering the moment of explosion and the subsequent rise, and continuing past peak brightness. These data are supplemented by multi-color Pan-STARRS1 and CTIO 4-m DECam observations obtained within hours of explosion. The K2 light curve has an unusual two-component shape, where the flux rises with a steep linear gradient for the first few days, followed by a quadratic rise as seen for typical SNe Ia. This "flux excess" relative to canonical SN Ia behavior is confirmed in our ii-band light curve, and furthermore, SN 2018oh is especially blue during the early epochs. The flux excess peaks 2.14±0.04\pm0.04 days after explosion, has a FWHM of 3.12±0.04\pm0.04 days, a blackbody temperature of T=17,5009,000+11,500T=17,500^{+11,500}_{-9,000} K, a peak luminosity of 4.3±0.2×1037ergs14.3\pm0.2\times10^{37}\,{\rm erg\,s^{-1}}, and a total integrated energy of 1.27±0.01×1043erg1.27\pm0.01\times10^{43}\,{\rm erg}. We compare SN 2018oh to several models that may provide additional heating at early times, including collision with a companion and a shallow concentration of radioactive nickel. While all of these models generally reproduce the early K2 light curve shape, we slightly favor a companion interaction, at a distance of \sim2×1012cm2\times10^{12}\,{\rm cm} based on our early color measurements, although the exact distance depends on the uncertain viewing angle. Additional confirmation of a companion interaction in future modeling and observations of SN 2018oh would provide strong support for a single-degenerate progenitor system
    corecore