78 research outputs found

    Phase tipping: how cyclic ecosystems respond to contemporary climate

    Get PDF
    We identify the phase of a cycle as a new critical factor for tipping points (critical transitions) in cyclic systems subject to time-varying external conditions. As an example, we consider how contemporary climate variability induces tipping from a predator–prey cycle to extinction in two paradigmatic predator–prey models with an Allee effect. Our analysis of these examples uncovers a counterintuitive behaviour, which we call phase tipping or P-tipping, where tipping to extinction occurs only from certain phases of the cycle. To explain this behaviour, we combine global dynamics with set theory and introduce the concept of partial basin instability for attracting limit cycles. This concept provides a general framework to analyse and identify easily testable criteria for the occurrence of phase tipping in externally forced systems, and can be extended to more complicated attractors

    Moving forward in circles: challenges and opportunities in modelling population cycles

    Get PDF
    Population cycling is a widespread phenomenon, observed across a multitude of taxa in both laboratory and natural conditions. Historically, the theory associated with population cycles was tightly linked to pairwise consumer–resource interactions and studied via deterministic models, but current empirical and theoretical research reveals a much richer basis for ecological cycles. Stochasticity and seasonality can modulate or create cyclic behaviour in non-intuitive ways, the high-dimensionality in ecological systems can profoundly influence cycling, and so can demographic structure and eco-evolutionary dynamics. An inclusive theory for population cycles, ranging from ecosystem-level to demographic modelling, grounded in observational or experimental data, is therefore necessary to better understand observed cyclical patterns. In turn, by gaining better insight into the drivers of population cycles, we can begin to understand the causes of cycle gain and loss, how biodiversity interacts with population cycling, and how to effectively manage wildly fluctuating populations, all of which are growing domains of ecological research

    Ratiometric imaging of minor groove binders in mammalian cells using Raman microscopy

    Get PDF
    Quantitative drug imaging in live cells is a major challenge in drug discovery and development. Many drug screening techniques are performed in solution, and therefore do not consider the impact of the complex cellular environment in their result. As such, important features of drug-cell interactions may be overlooked. In this study, Raman microscopy is used as a powerful technique for quantitative imaging of Strathclyde-minor groove binders (S-MGBs) in mammalian cells under biocompatible imaging conditions. Raman imaging determined the influence of the tail group of two novel minor groove binders (S-MGB-528 and S-MGB-529) in mammalian cell models. These novel S-MGBs contained alkyne moieties which enabled analysis in the cell-silent region of the Raman spectrum. The intracellular uptake concentration, distribution and mechanism were evaluated as a function of the pKa of the tail group, morpholine and amidine, for S-MGB-528 and S-MGB-529, respectively. Although S-MGB-529 had a higher binding affinity to the minor groove of DNA in solution phase measurements, the Raman imaging data indicated that S-MGB-528 showed a greater degree of intracellular accumulation. Furthermore, using high resolution stimulated Raman scattering (SRS) microscopy the initial localisation of S-MGB-528 was shown to be in the nucleus before accumulation in the lysosome, which was demonstrated using a multimodal imaging approach. This study highlights the potential of Raman spectroscopy for quantitative drug imaging studies and highlights the importance of imaging techniques to investigate drug-cell interactions, to better inform the drug design process

    Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates With Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial

    Get PDF
    Importance Hypothermia for 72 hours at 33.5°C for neonatal hypoxic-ischemic encephalopathy reduces death or disability, but rates continue to be high. Objective To determine if cooling for 120 hours or to a temperature of 32.0°C reduces death or disability at age 18 months in infants with hypoxic-ischemic encephalopathy. Design, Setting, and Participants Randomized 2 × 2 factorial clinical trial in neonates (≄36 weeks’ gestation) with hypoxic-ischemic encephalopathy at 18 US centers in the Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network between October 2010 and January 2016. Interventions A total of 364 neonates were randomly assigned to 4 hypothermia groups: 33.5°C for 72 hours (n = 95), 32.0°C for 72 hours (n = 90), 33.5°C for 120 hours (n = 96), or 32.0°C for 120 hours (n = 83). Main Outcomes and Measures The primary outcome was death or moderate or severe disability at 18 to 22 months of age adjusted for center and level of encephalopathy. Severe disability included any of Bayley Scales of Infant Development III cognitive score less than 70, Gross Motor Function Classification System (GMFCS) level of 3 to 5, or blindness or hearing loss despite amplification. Moderate disability was defined as a cognitive score of 70 to 84 and either GMFCS level 2, active seizures, or hearing with amplification. Results The trial was stopped for safety and futility in November 2013 after 364 of the planned 726 infants were enrolled. Among 347 infants (95%) with primary outcome data (mean age at follow-up, 20.7 [SD, 3.5] months; 42% female), death or disability occurred in 56 of 176 (31.8%) cooled for 72 hours and 54 of 171 (31.6%) cooled for 120 hours (adjusted risk ratio, 0.92 [95% CI, 0.68-1.25]; adjusted absolute risk difference, −1.0% [95% CI, −10.2% to 8.1%]) and in 59 of 185 (31.9%) cooled to 33.5°C and 51 of 162 (31.5%) cooled to 32.0°C (adjusted risk ratio, 0.92 [95% CI, 0.68-1.26]; adjusted absolute risk difference, −3.1% [95% CI, −12.3% to 6.1%]). A significant interaction between longer and deeper cooling was observed (P = .048), with primary outcome rates of 29.3% at 33.5°C for 72 hours, 34.5% at 32.0°C for 72 hours, 34.4% at 33.5°C for 120 hours, and 28.2% at 32.0°C for 120 hours. Conclusions and Relevance Among term neonates with moderate or severe hypoxic-ischemic encephalopathy, cooling for longer than 72 hours, cooling to lower than 33.5°C, or both did not reduce death or moderate or severe disability at 18 months of age. However, the trial may be underpowered, and an interaction was found between longer and deeper cooling. These results support the current regimen of cooling for 72 hours at 33.5°C

    Aggressive vs. conservative phototherapy for infants with extremely low birth weight.

    Get PDF
    BACKGROUND: It is unclear whether aggressive phototherapy to prevent neurotoxic effects of bilirubin benefits or harms infants with extremely low birth weight (1000 g or less). METHODS: We randomly assigned 1974 infants with extremely low birth weight at 12 to 36 hours of age to undergo either aggressive or conservative phototherapy. The primary outcome was a composite of death or neurodevelopmental impairment determined for 91% of the infants by investigators who were unaware of the treatment assignments. RESULTS: Aggressive phototherapy, as compared with conservative phototherapy, significantly reduced the mean peak serum bilirubin level (7.0 vs. 9.8 mg per deciliter [120 vs. 168 micromol per liter], P\u3c0.01) but not the rate of the primary outcome (52% vs. 55%; relative risk, 0.94; 95% confidence interval [CI], 0.87 to 1.02; P=0.15). Aggressive phototherapy did reduce rates of neurodevelopmental impairment (26%, vs. 30% for conservative phototherapy; relative risk, 0.86; 95% CI, 0.74 to 0.99). Rates of death in the aggressive-phototherapy and conservative-phototherapy groups were 24% and 23%, respectively (relative risk, 1.05; 95% CI, 0.90 to 1.22). In preplanned subgroup analyses, the rates of death were 13% with aggressive phototherapy and 14% with conservative phototherapy for infants with a birth weight of 751 to 1000 g and 39% and 34%, respectively (relative risk, 1.13; 95% CI, 0.96 to 1.34), for infants with a birth weight of 501 to 750 g. CONCLUSIONS: Aggressive phototherapy did not significantly reduce the rate of death or neurodevelopmental impairment. The rate of neurodevelopmental impairment alone was significantly reduced with aggressive phototherapy. This reduction may be offset by an increase in mortality among infants weighing 501 to 750 g at birth. (ClinicalTrials.gov number, NCT00114543.

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore