84 research outputs found

    Stochastic Geometric Coverage Analysis in mmWave Cellular Networks With Realistic Channel and Antenna Radiation Models

    Get PDF
    Millimeter-wave (mmWave) bands will play an important role in 5G wireless systems. The system performance can be assessed by using models from stochastic geometry that cater for the directivity in the desired signal transmissions as well as the interference, and by calculating the signal-To-interference-plus-noise ratio ( \mathsf {SINR} ) coverage. Nonetheless, the accuracy of the existing coverage expressions derived through stochastic geometry may be questioned, as it is not clear whether they would capture the impact of the detailed mmWave channel and antenna features. In this paper, we propose an \mathsf {SINR} coverage analysis framework that includes realistic channel model and antenna element radiation patterns. We introduce and estimate two parameters, aligned gain and misaligned gain, associated with the desired signal beam and the interfering signal beam, respectively. The distributions of these gains are used to determine the distribution of the \mathsf {SINR} which is compared with the corresponding \mathsf {SINR} coverage, calculated through the system-level simulations. The results show that both aligned and misaligned gains can be modeled as exponential-logarithmically distributed random variables with the highest accuracy, and can further be approximated as exponentially distributed random variables with reasonable accuracy. These approximations can be used as a tool to evaluate the system-level performance of various 5G connectivity scenarios in the mmWave band.</p

    Opportunities and enabling technologies for 5G and beyond-5G spectrum sharing

    Get PDF
    In this paper an overview is given of the current status of 5G industry standards, spectrum allocation, and use cases, followed by initial investigations of new opportunities for spectrum sharing in 5G and the underlying technologies to enable efficient sharing, considering both licensed and unlicensed scenarios and spectrum both below 6 GHz and in the millimeter-wave frequency range

    Decline in age at menarche among Spanish women born from 1925 to 1962

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the timing of reproductive events varies across populations, a downward trend in age at menarche has nevertheless been reported in most of the developed world over the past century. Given the impact of change in age at menarche on health conditions, this study sought to examine secular trends in age at menarche among women living in Navarre (Northern Spain) who participated in a population-based breast cancer screening programme.</p> <p>Methods</p> <p>The study was based on 110545 women born from 1925 to 1962. Trends were tested using a linear regression model, in which year of birth was entered continuously as the predictor and age at menarche (years) as the response variable, using size of town and region of birth as covariates.</p> <p>Results</p> <p>Among women born in Navarre between 1925 and 1962, age at menarche declined steadily from an average of 13.72 years in the 1925-1929 birth-cohorts to 12.83 years in the 1958-1962 birth-cohorts. Controlling for size of town or city of birth, age at menarche declined by an average of 0.132 years every 5 years over the period 1925-1962. This decline was greater in women born in rural versus urban settings. Trends were also different among regions of birth.</p> <p>Conclusion</p> <p>We report a population-based study showing a downward trend in age of onset of menarche among Spanish women born in the period 1925-1962, something that is more pronounced among women born in rural settings and varies geographically.</p

    Birth size and gestational age in opposite-sex twins as compared to same-sex twins: An individual-based pooled analysis of 21 cohorts

    Get PDF
    It is well established that boys are born heavier and longer than girls, but it remains unclear whether birth size in twins is affected by the sex of their co-twin. We conducted an individual-based pooled analysis of 21 twin cohorts in 15 countries derived from the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins), including 67,850 dizygotic twin individuals. Linear regression analyses showed that boys having a co-twin sister were, on average, 31 g (95% CI 18 to 45) heavier and 0.16 cm (95% CI 0.045 to 0.274) longer than those with a co-twin brother. In girls, birth size was not associated (5 g birth weight; 95% CI -8 to -18 and -0.089 cm birth length; 95% CI -0.202 to 0.025) with the sex of the co-twin. Gestational age was slightly shorter in boy-boy pairs than in boy-girl and girl-girl pairs. When birth size was standardized by gestational age, the magnitude of the associations was attenuated in boys, particularly for birth weight. In conclusion, boys with a co-twin sister are heavier and longer at birth than those with a co-twin brother. However, these differences are modest and partly explained by a longer gestation in the presence of a co-twin sister

    Genetic and environmental factors affecting birth size variation: a pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts

    Get PDF
    Background: The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia) and across birth cohorts, and how gestational age modifies these effects. Methods: Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling. Results: The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased the proportions of shared environmental variance and increased the propositions of unique environmental variance. Genetic variance was similar in the geographical-cultural regions, but shared environmental variance was smaller in East Asia than in Europe and North America and Australia. The total variance and shared environmental variance of birth length and PI were greater from the birth cohort 1990-99 onwards compared with the birth cohorts from 1970-79 to 1980-89. Conclusions: The contribution of genetic factors to birth size is smaller than that of shared environmental factors, which is partly explained by gestational age. Shared environmental variances of birth length and PI were greater in the latest birth cohorts and differed also across geographical-cultural regions. Shared environmental factors are important when explaining differences in the variation of birth size globally and over time

    Association between birthweight and later body mass index: an individual-based pooled analysis of 27 twin cohorts participating in the CODATwins project

    Get PDF
    Background: There is evidence that birthweight is positively associated with body mass index (BMI) in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. We analysed the association between birthweight and BMI from infancy to adulthood within twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. Methods: This study is based on the data from 27 twin cohorts in 17 countries. The pooled data included 78 642 twin individuals (20 635 monozygotic and 18 686 same-sex dizygotic twin pairs) with information on birthweight and a total of 214 930 BMI measurements at ages ranging from 1 to 49 years. The association between birthweight and BMI was analysed at both the individual and within-pair levels using linear regression analyses. Results: At the individual level, a 1-kg increase in birthweight was linearly associated with up to 0.9 kg/m 2 higher BMI ( P  < 0.001). Within twin pairs, regression coefficients were generally greater (up to 1.2 kg/m 2 per kg birthweight, P  < 0.001) than those from the individual-level analyses. Intra-pair associations between birthweight and later BMI were similar in both zygosity groups and sexes and were lower in adulthood. Conclusions: These findings indicate that environmental factors unique to each individual have an important role in the positive association between birthweight and later BMI, at least until young adulthood

    Associations between birth size and later height from infancy through adulthood: An individual based pooled analysis of 28 twin cohorts participating in the CODATwins project.

    Get PDF
    BACKGROUND: There is evidence that birth size is positively associated with height in later life, but it remains unclear whether this is explained by genetic factors or the intrauterine environment. AIM: To analyze the associations of birth weight, length and ponderal index with height from infancy through adulthood within mono- and dizygotic twin pairs, which provides insights into the role of genetic and environmental individual-specific factors. METHODS: This study is based on the data from 28 twin cohorts in 17 countries. The pooled data included 41,852 complete twin pairs (55% monozygotic and 45% same-sex dizygotic) with information on birth weight and a total of 112,409 paired height measurements at ages ranging from 1 to 69 years. Birth length was available for 19,881 complete twin pairs, with a total of 72,692 paired height measurements. The association between birth size and later height was analyzed at both the individual and within-pair level by linear regression analyses. RESULTS: Within twin pairs, regression coefficients showed that a 1-kg increase in birth weight and a 1-cm increase in birth length were associated with 1.14-4.25 cm and 0.18-0.90 cm taller height, respectively. The magnitude of the associations was generally greater within dizygotic than within monozygotic twin pairs, and this difference between zygosities was more pronounced for birth length. CONCLUSION: Both genetic and individual-specific environmental factors play a role in the association between birth size and later height from infancy to adulthood, with a larger role for genetics in the association with birth length than with birth weight

    Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study

    Get PDF
    Background: Both genetic and environmental factors are known to affect body mass index (BMI), but detailed understanding of how their effects differ during childhood and adolescence is lacking. Objectives: We analyzed the genetic and environmental contributions to BMI variation from infancy to early adulthood and the ways they differ by sex and geographic regions representing high (North America and Australia), moderate (Europe), and low levels (East Asia) of obesogenic environments. Design: Data were available for 87,782 complete twin pairs from 0.5 to 19.5 y of age from 45 cohorts. Analyses were based on 383,092 BMI measurements. Variation in BMI was decomposed into genetic and environmental components through genetic structural equation modeling. Results: The variance of BMI increased from 5 y of age along with increasing mean BMI. The proportion of BMI variation explained by additive genetic factors was lowest at 4 y of age in boys (a2 = 0.42) and girls (a2 = 0.41) and then generally increased to 0.75 in both sexes at 19 y of age. This was because of a stronger influence of environmental factors shared by co-twins in midchildhood. After 15 y of age, the effect of shared environment was not observed. The sex-specific expression of genetic factors was seen in infancy but was most prominent at 13 y of age and older. The variance of BMI was highest in North America and Australia and lowest in East Asia, but the relative proportion of genetic variation to total variation remained roughly similar across different regions. Conclusions: Environmental factors shared by co-twins affect BMI in childhood, but little evidence for their contribution was found in late adolescence. Our results suggest that genetic factors play a major role in the variation of BMI in adolescence among populations of different ethnicities exposed to different environmental factors related to obesity

    Genetic and environmental variation in educational attainment: an individual-based analysis of 28 twin cohorts

    Get PDF
    We investigated the heritability of educational attainment and how it differed between birth cohorts and cultural-geographic regions. A classical twin design was applied to pooled data from 28 cohorts representing 16 countries and including 193,518 twins with information on educational attainment at 25 years of age or older. Genetic factors explained the major part of individual differences in educational attainment (heritability: a2 = 0.43; 0.41-0.44), but also environmental variation shared by co-twins was substantial (c2 = 0.31; 0.30-0.33). The proportions of educational variation explained by genetic and shared environmental factors did not differ between Europe, North America and Australia, and East Asia. When restricted to twins 30 years or older to confirm finalized education, the heritability was higher in the older cohorts born in 1900-1949 (a2 = 0.44; 0.41-0.46) than in the later cohorts born in 1950-1989 (a2 = 0.38; 0.36-0.40), with a corresponding lower influence of common environmental factors (c2 = 0.31; 0.29-0.33 and c2 = 0.34; 0.32-0.36, respectively). In conclusion, both genetic and environmental factors shared by co-twins have an important influence on individual differences in educational attainment. The effect of genetic factors on educational attainment has decreased from the cohorts born before to those born after the 1950s

    Genetic and environmental influences on adult human height across birth cohorts from 1886 to 1994

    Get PDF
    Human height variation is determined by genetic and environmental factors, but it remains unclear whether their influences differ across birth-year cohorts. We conducted an individual-based pooled analysis of 40 twin cohorts including 143,390 complete twin pairs born 1886-1994. Although genetic variance showed a generally increasing trend across the birth-year cohorts, heritability estimates (0.69-0.84 in men and 0.53-0.78 in women) did not present any clear pattern of secular changes. Comparing geographic-cultural regions (Europe, North America and Australia, and East Asia), total height variance was greatest in North America and Australia and lowest in East Asia, but no clear pattern in the heritability estimates across the birth-year cohorts emerged. Our findings do not support the hypothesis that heritability of height is lower in populations with low living standards than in affluent populations, nor that heritability of height will increase within a population as living standards improve.Peer reviewe
    • …
    corecore