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Abstract 

Background: The genetic architecture of birth size may differ geographically and over time. 

We examined differences in the genetic and environmental contributions to birth weight, 

length, and ponderal index (PI) across geographic-cultural regions (Europe, North-America 

and Australia, and East-Asia) and across birth cohorts and how gestational age modifies these 

effects. 

 

Methods: Data from 26 twin cohorts in 16 countries including 57613 monozygotic and 

dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were 

estimated using genetic structural equation modeling. 

 

Results: The variance of birth weight and length was predominantly explained by shared 

environmental factors, whereas the variance of PI was explained both by shared and unique 

environmental factors. Genetic variance contributing to birth size was small. Adjusting for 

gestational age decreased the proportions of shared environmental variance and increased the 

propositions of unique environmental variance. Genetic variance was similar in the 

geographic-cultural regions, but shared environmental variance was smaller in East-Asia than 

in Europe and North-America and Australia. The total variance and shared environmental 

variance of birth length and PI were greater from the birth cohort 1990-1999 onwards 

compared with the birth cohorts from 1970-1979 to 1980-1989. 

 

Conclusion: The contribution of genetic factors to birth size is smaller than that of shared 

environmental factors, which is partly explained by gestational age. Shared environmental 

variances of birth length and PI were greater in the latest birth cohorts and differed also across 

geographic-cultural regions. Shared environmental factors are important when explaining 

differences in the variation of birth size globally and over time. 
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Key messages 

Additive genetic factors contributing to birth size have a small but consistent effect across 

geographic-cultural regions (Europe, North-America and Australia, and East-Asia) and across 

birth cohorts. 

 

Environmental factors shared by co-twins importantly contribute to the inter-individual 

variation in birth weight, length and ponderal index, which is partly explained by gestational 

age. 

 

Shared environmental influences were smaller in East-Asia than in Europe and North-

America and Australia. 
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Introduction 

 

Birth size is an indicator of infant health and is associated with health related traits in later life 

such as hypertension1-3, obesity4, 5, and psychosocial distress6. Moreover, low birth weight is 

associated with an increased risk of metabolic diseases including type 2 diabetes7 and 

cardiovascular diseases in adulthood8, 9. Both genetic and environmental factors influence 

birth size10, 11. Associations between fetal genotype and birth weight can in part reflect the 

indirect effects of the maternal genotype influencing birth weight via the intrauterine 

environment12. Studying monozygotic (MZ) and dizygotic (DZ) twin pairs is a widely-used 

method to decompose total variance into fractions explained by genetic and environmental 

differences between individuals. The environmental factors shared by co-twins include 

gestational age, total placental weight, and maternal factors, such as maternal body size and 

smoking. Individual placental characteristics, such as placental function including nutrient 

capacity, anatomy, and perinatal injuries can lead to differences in birth size between co-twins 

and are thus part of the environment unique for each twin individual. A previous Dutch study 

found that the genetic factors explained almost an identical share of the total variation of birth 

weight and length when estimated by parent-offspring trios of singletons (26% and 26%, 

respectively) and MZ and DZ twins (29% and 27%, respectively), supporting the value of the 

twin design when studying birth size13. Gestational age affects birth weight and, because it is 

shared by co-twins, may lead to the overestimation of shared environment, if not accounted 

for14.  

 

Genetic and environmental variation of fetal growth may differ between populations because 

of differences in maternal dietary habits, other environmental exposures and the gene pool of 

population. A multinational twin study reported that genetic factors explained 17% of the 

variation of birth weight. This contribution was similar in Western and East-Asian 
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populations, but there were differences in the proportions of environmental factors both 

shared and unshared by co-twins15.  

 

It is well known that maternal nutrition and other maternal factors affect birth size and the 

determinants of birth size may have changed across birth cohorts over the 20th century16, 17. 

However, there are no previous studies which would have analyzed how the role of genetic 

and environmental factors on birth size has changed over time. Further, the only international 

comparison was based only on seven twin cohorts15; larger studies would be warranted to get 

more precise estimates. Finally, it would be important to analyze also other indicators of birth 

size than birth weight, and gestational age should be adjusted for because otherwise the role 

of shared environment will be inflated. To address these questions, we used birth weight and 

length data available in the largest pooled database of twin cohorts in the world. We aimed to 

examine differences in genetic and environmental contributions to birth weight, length, and 

ponderal index (PI) (PI=weight (kg)/height (m3)) across geographic-cultural regions (Europe, 

North-America and Australia, and East-Asia) and across birth cohorts from 1915 through 

2013 and how gestational age modifies these effects. 

 

Material and methods 

Sample 

The data were derived from the COllaborative project of Development of Anthropometrical 

measures in Twins (CODATwins) database18. Information on birth weight was available in 26 

cohorts from 16 countries, and birth length and gestational age were available in 14 and 17 of 

these cohorts, respectively. In the majority of cohorts, the birth-related measures were 

parentally reported (79% for birth weight, 87% for birth length, and 83% for gestational age) 

or self-reported (14%, 2%, and 8%, respectively) and only in a few cohorts, they were based 

on records from nurses or clinicians (7%, 11% and 9%, respectively). However, birth weights 
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from maternal recall and medical records were found to be highly correlated19. The 

participating twin cohorts are listed in Table 1 (footnote) and were previously described in 

detail18. The prevalence of obesity and overweight is lowest in East-Asia, thus representing a 

less obesogenic environment, and highest in North-America and Australia, thus representing a 

more obesogenic environment20. Obesogenic environment can affect maternal dietary habits 

and maternal size, which indirectly reflect birth size21-23. Therefore, we divided these cohorts 

into three geographic–cultural regions: Europe, North-America and Australia, and East-

Asia20.   

 

There were 121,997 twin individuals with data on birth weight. We excluded individuals with 

birth weight <0.5 or >5 kg (n=79) or without data on their co-twins (n= 6,606) as well as 

those with intra-pair difference in birth weight >2kg (22 pairs) or contrasting information on 

birth year between co-twins (21 pairs) leading to 57,613 twin pairs (38% MZ, 34% SSDZ and 

28% OSDZ twins). For the analyses on birth length and PI, individuals without data on birth 

length (n= 64,626), those with birth length <25 or >60 cm (n=33), PI <12 or >38 kg/m3 

(n=675) or born before 1970 (n=261), and co-twins with intra-pair difference in birth length 

>12 cm (3 pairs) or PI >15 kg/ m3 (9 pairs) were removed leading to 27,084 twin pairs (38% 

MZ, 33% SSDZ and 29% OSDZ twins). 

 

We further standardized birth weight, length and PI for gestational age separately by sex and 

within the individuals included in each group of analyses. These three measures of birth size 

were expressed as SD scores of the respective means/weeks of gestation (z-scores; i.e., mean 

= 0 and SD = 1) to estimate their relative value for a given gestational age. Individuals with 

gestational age <25 or >45 weeks were excluded. Outlying values for birth weight, length and 

PI values for a given gestational age were checked by visual inspection of histograms for each 

gestational week and removed (0.2% for birth weight and 0.4% for birth length and PI) 



10 

 

resulting in 38,806 (birth weight) and 23,742 twin pairs (birth length and PI) for analyses. 

 

All participants were volunteers and gave their informed consent when participating in their 

original studies. A limited set of observational variables and anonymized data were delivered 

to the data management center at University of Helsinki. The pooled analysis was approved 

by the ethical committee of Department of Public Health, University of Helsinki. 

 

Statistical analyses  

 

The data were analyzed using genetic structural equations modeling24. MZ twins share 

virtually the same genomic sequence, whereas DZ twins share, on average, 50% of their 

genes identical-by-descent. On this basis, the total variance was decomposed into variance 

due to additive genetic factors (A: correlated 1.0 for MZ and 0.5 for DZ pairs), shared 

(common) environmental factors (C: by definition, correlated 1.0 for MZ and DZ pairs) and 

unique (non-shared) environmental factors (E: by definition, uncorrelated for MZ and DZ 

pairs). All genetic models were fitted by the OpenMx package (version 2.0.1) in the R 

statistical platform25.  

 

A full model with A, C, and E factors was fit to the data. We allowed a shared environmental 

correlation to be less than 1 for OSDZ pairs, as compared to 1 expected for SSDZ and MZ 

pairs; this would suggest the presence of sex-specific shared environmental factors affecting 

size at birth. Since boys and DZ twins showed greater birth size than girls and MZ twins, 

different means for sex and zygosity groups were allowed. We then conducted the analyses in 

the three geographic-cultural regions and across the birth cohorts from 1915 through 2013 per 

decade. Moreover, the genetic and environmental variances of birth weight were analyzed for 

each twin cohort. Birth weight, length and PI values (both unstandardized and standardized 
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for gestational age) were first adjusted for twin cohort within each sex and geographic-

cultural region/birth year groups using linear regressions, and the resulting residuals were 

used in the analyses. 

 

Results 

 

Birth weight was greater in European and North-American and Australian than in East-Asian 

newborns (Table 1). The variance of birth weight was greatest in North-America and Australia 

and lowest in East-Asia. Mean birth weight did not show any clear pattern across the birth 

cohorts until 1980-1989 but started to decrease from 1990-1999 onwards. Mean birth length 

in European and North-American and Australian boys and girls was greater than in East-

Asians (Table 2). The variance showed a less clear pattern, but was greatest in European and 

lowest in East-Asian boys and girls. In MZ and DZ twins, the means of PI in boys were 

similar to those in girls in all geographic-cultural regions, except for East-Asia where MZ 

girls had the greatest PI. The mean PI of boys was similar between the geographic-cultural 

regions, whereas the mean PI of girls was greater in East-Asia than in Europe and North-

America and Australia. The variances of PI were greatest in Europe and lowest in East-Asia in 

both sexes.  

 

Figure 1 presents the additive genetic, shared environmental and unique environmental 

variances of birth weight, birth length and PI by the cultural-geographic region; the exact 

point estimates and their 95% confidence intervals (CI) are available in Supplemental table 1 

and 2. Shared environmental factors explained the major part of the variation of birth weight 

and length whereas shared and unique environmental factors explained roughly equal shares 

of the variation of PI. When comparing the cultural-geographic regions, the differences in the 

variances were mainly explained by shared environmental variances. For birth weight, the 
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shared environmental variance was lower in East-Asian boys (c2=0.11, 95% CI 0.09-0.14) and 

girls (c2=0.11, 95% CI 0.09-0.13) than found in Europe (c2=0.19, 95% CI 0.18-0.20 and 0.18, 

95% CI 0.17-0.18, respectively) or North-America and Australia (c2=0.23, 95% CI 0.22-0.24 

and 0.22, 95% CI 0.21-0.23, respectively). Similar differences in the shared environmental 

variances were also found for birth length and PI. When the results were adjusted for 

gestational age, especially the relative contribution of shared environmental variation to birth 

weight decreased. However, also in these analyses, the shared environmental variation was 

lower in East-Asia than in the other regions. For birth length and PI, the relative decrease in 

shared environmental variance after the adjustment of gestational age was smaller than for 

birth weight.  

 

Figure 2 presents the corresponding results by birth cohorts (the exact point estimates and 

their 95% CIs are available in Supplemental table 1 and 2). For birth length and PI, the total 

variances were greater in the birth cohorts 1990-1999 onwards as compared with the birth 

cohorts from 1970-1979 to 1980-1989. Adjusting the results for gestational age decreased 

especially the proportions of shared environmental variance. After the adjustment for 

gestational age, systematic decrease in the shared environmental variance was found from the 

cohorts born in 1940-1949 (c2=0.55, 95% CI 0.32-0.78 in boys and c2=0.68, 95% CI 0.46-

0.87 in girls) until 2000-2013 (c2=0.17, 95% CI 0.10-0.26 and c2=0.18, 95% CI 0.11-0.27, 

respectively).   

 

Figure 3 presents the variances of birth weight in each twin cohort according to the cohort 

mean birth weight (the exact point estimates with their 95% CIs are available in Supplemental 

table 3). Some heterogeneity between the cohorts, especially in additive genetic variation, was 

found. However, this did not show any clear pattern according to the mean birth weight of 

cohort.  
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Discussion 

 

Using data from 57,613 complete twin pairs from 16 countries, the present study revealed that 

environmental factors shared by co-twins importantly contribute to the inter-individual 

variation in birth weight, birth length, and PI. These factors also explained an important share 

of regional differences in the birth weight variation as found also in previous studies11, 15, 26. In 

the classical twin design, maternal effects shared by co-twins, including gestational age, 

would show up as a shared environmental variance. A previous international study of seven 

twin cohorts reported that from 50% to 70% of the total variance in birth weight was 

associated with maternal effects,15 which is close to the relative contribution of shared 

environmental variance found in our study before standardizing the results for gestational age. 

The standardization for gestational age decreased especially the shared environmental 

variances for birth weight relative to the variances of birth length and PI suggesting that birth 

weight is more influenced by the length of gestation than birth length and PI27. 

 

The mean and total variance of birth weight and length were lower in East-Asia than in the 

other regions, which corresponds with previous studies28, 29. The differences in the total 

variances were especially contributed by differences in shared environmental variance. It has 

been suggested that part of these maternal effects is due to maternal genes which regulate fetal 

growth, possibly through intra uterine environment30, 31. Heritability estimates for the length 

of gestation were found over 30 %31, 32, indicating that it is a heritable trait in European 

ancestry populations. Heritability of the length of gestation for East-Asian populations is 

presently unknown, but if these differ from European ancestry estimates, this may partly 

explain these regional differences in shared environmental variances.  
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Various maternal genes have been shown to influence fetal growth, either directly or 

indirectly. A study examining genome-wide DNA methylation patterns in term human 

placentas showed that the patterns of DNA methylation were significantly associated with 

infant growth33. Moreover, a multi-ancestry genome-wide association study indicated that two 

loci (INS–IGF2 and RB1) of the 60 genome-wide significant loci from maternal sources fall 

within (or near) imprinted genes in fetal growth12. If the frequency of DNA methylation of 

gene and/or two loci among Asians differ from those among European ancestry34, the genetic 

variability in maternal characteristics may explain some of the difference in shared 

environmental variance of birth weight between European ancestry and East-Asians detected 

in the present study.  

 

Mean PI was similar among boys across the geographic-cultural regions. However, mean PI 

was greater in East-Asian than in European and North-American and Australian girls. Gilson 

et al. (2015)27 indicated that PI varied between ethnicities. Moreover, in the present study, 

shared environmental variance differed between these regions. The smaller shared 

environmental variance observed in East-Asia than in the other regions may reflect 

differences in maternal nutrition, smoking, and other environmental factors.  

 

The means and variances of birth weight and length were lower in the cohorts born after than 

before 1990. In the recent decades, the prevalence of preterm births among singletons and 

twins has increased in most industrialized countries, while at the same time perinatal mortality 

has decreased, mainly because of medically indicated preterm births35-44. Gielen et al. (2010) 

reported that the frequency of infertility treatment and caesarean sections as well as advanced 

maternal age have increased over the years, but none of these factors influenced the secular 

trends in birth weight44. The decrease in birth weight and length found in the present study 

may reflect the decrease in mean length of gestation up to 32 weeks as suggested by Gielen et 
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al. (2010)44. Another factor with respect to time trends is the increasing survival of twin 

births. The survivors represent different proportions of the twin pregnancies45, and these 

proportions might be represented differentially in the distributions of birth weight and birth 

length. We found evidence for these explanations since the results adjusted for gestational age 

did not show differences in the total variance of birth weight. This suggests that the increasing 

total variation over the birth cohorts is affected by increasing survival of babies with early 

gestational age. In the analyses adjusted for gestational age, shared environmental variance 

decreased over the birth cohorts. This may suggest that the variation in maternal factors has 

decreased at the same time when general standard of living has increased.  

 

When considering how well our results can be generalized, the assumptions made by the twin 

design need to be considered. MZ twins can either share one chorion and one amnion, each 

fetus can have its own amnion, or they can each have their own chorion and amnion such for 

virtually all DZ twins. Previous Dutch and Belgian studies46, 47 have reported somewhat lower 

correlations for mono-chorionic than di-chorionic MZ twins, which can lead to under 

estimation of additive genetic variance and over estimation of shared environmental variance. 

However, if there would be extra variation because of more dissimilar intrauterine 

environment of MZ twins, it should have been seen as the higher trait variance in MZ twins 

which was not the case in our study. One explanation is that very discordant pairs are not part 

of our study because of higher neonatal mortality or other reasons. It would be important to 

estimate the contributions of genetic and environmental factors also by using other methods 

available for singleton pregnancies to confirm how well our twin study results can be 

generalized to the whole population. 

 

The main strength of our study is the very large sample size allowing the investigation of 

differences on the genetic and environmental contributions to individual differences in birth 
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size in much more detailed than in previous studies. Pooling data from a large number of twin 

cohorts also permits the analyses by geographic-cultural regions and birth cohorts born over 

100 years. Further, were able to analyze also birth length and PI and adjust the results for 

gestational age. Especially the lack of information of gestational age is a major limitation in 

previous studies since it inflates shared environmental variation as demonstrated in our study. 

However, countries and/or geographic-cultural regions are not equally represented, and the 

database is heavily weighted towards populations following the Westernized lifestyle. There 

are few data available from Middle-East and Africa and no data from South-Asia or South-

America. It is also noteworthy that all countries have different historical development, and 

thus the same birth cohorts can have been exposed to different environmental exposures. This 

may well have diluted the differences between the birth cohorts in this study which reflects 

the average variances of different countries. 

 

In conclusion, as contrast to the small contribution of genetic factors, environmental factors 

shared by co-twins importantly contribute to the inter-individual variation in birth size even 

after the standardization for gestational age. The contributions of genetic effects on birth size 

were similar in the geographic-cultural regions, but unique environmental influences were 

slightly larger and shared environmental influences smaller in East-Asia than in the other 

regions. This suggests that in the westernized social context there are features increasing 

variation in maternal nutrition and other maternal factors affecting birth size. Our results thus 

indicate that maternal factors importantly contribute to birth size and can then be a target for 

public health interventions to improve infant health. 
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Table 1. Sample sizes, means and standard deviations of birth weight (kg) by sex, region, birth year, and 

zygosity 

 

Zygosity 

Boys 
 

Girls 

 
N Mean SD  

 
N Mean SD  

All cohorts1) 

MZ 20596 2.52 0.55 
 

22806 2412.5 529.1 

DZ 36212 2.60 0.57 
 

35612 2502.0 545.7 

Region 

Europe2) MZ 13318 2.53 0.56 
 

13974 2.42 0.53 

Europe2) DZ 24616 2.63 0.56 
 

23598 2.52 0.54 

NA and Aus3) MZ 5258 2.52 0.56 
 

6592 2.40 0.54 

NA and Aus3) DZ 9765 2.57 0.59 
 

10223 2.47 0.57 

East Asia4) MZ 1910 2.48 0.51 
 

2132 2.39 0.47 

East Asia4) DZ 1421 2.49 0.51 
 

1403 2.41 0.47 

B i r t h  y e a r 

1915-1939 MZ 174 2.49 0.68 
 

374 2.44 0.65 

1915-1939 DZ 133 2.85 0.84  353 2.64 0.66 

1940-1949 MZ 758 2.60 0.56 
 

1280 2.47 0.52 

1940-1949 DZ 1092 2.77 0.57 
 

1558 2.61 0.51 

1950-1959 MZ 1166 2.62 0.56 
 

1952 2.46 0.54 

1950-1959 DZ 1384 2.79 0.58 
 

1900 2.66 0.56 

1960-1969 MZ 286 2.63 0.58 
 

480 2.40 0.55 

1960-1969 DZ 176 2.72 0.64 
 

284 2.53 0.59 

1970-1979 MZ 3068 2.62 0.52 
 

1826 2.48 0.48 

1970-1979 DZ 3274 2.74 0.53 
 

2048 2.63 0.51 

1980-1989 MZ 2734 2.56 0.52 
 

3072 2.49 0.52 

1980-1989 DZ 3698 2.71 0.53 
 

3722 2.61 0.52 

1990-1999 MZ 8338 2.48 0.57 
 

9474 2.38 0.53 

1990-1999 DZ 16932 2.56 0.56  16634 2.47 0.54 

2000-2013 MZ 4072 2.46 0.55 
 

4348 2.36 0.52 

2000-2013 DZ 9523 2.53 0.58 
 

9113 2.43 0.55 

1) Includes all cohorts in the footnotes 2-4 and Africa (one cohort, 108 twin pairs, Guinea-Bissau Twin Study) and Middle-East (one 

cohort, 400 pairs, Longitudinal Israeli Study of Twins) 

2) Europe (11 cohorts, 37,753 twin pairs): East Flanders Prospective Twin Survey, Finntwin12, Finntwin16, Gemini Study, Hungarian 

Twin Registry, Italian Twin Registry, Norwegian Twin Registry, Swedish Young Male Twins Study of Adults, Swedish Young Male 

Twins Study of Children, Twins Early Developmental Study and Young Netherlands Twin Registry 

3) North America and Australia (9 cohorts, 15,919 twin pairs): includes the following twin cohorts: Australian Twin Registry, Boston 

University Twin Project, Carolina African American Twin Study of Aging, Colorado Twin Registry, Michigan Twins Study, 

Minnesota Twin Family Study, Minnesota Twin Registry, Peri/Postnatal Epigenetic Twins Study and Quebec Newborn Twin Study     

4) East-Asia (4 cohorts, 3433 twin pairs): Japanese Twin Cohort, Mongolian Twin Registry, Qingdao Twin Registry of Children and 
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West Japan Twins Registry  
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Table 2. Sample sizes, means and standard deviations of birth length (cm) and ponderal index (kg/m3) 

by sex, region, birth year, and zygosity 

1) Europe (11 cohorts, 23,496 twin pairs) 

2) North America and Australia (9 cohorts, 872 twin pairs) 

3) East-Asia (4 cohorts, 2614 twin pairs) 

 

  

  
Birth Length 

 
Ponderal Index  

 

Zygosity 

Boys Girls 
 

Boys Girls 

 
N Mean SD  N Mean SD  

 
N Mean SD  N Mean SD  

All cohort 

 

MZ 10394 47.0 3.2 10054 46.4 3.3 
 

10394 24.4 3.0 10054 24.3 3.3 

DZ 17758 47.5 3.3 15962 46.9 3.2 
 

17758 24.4 3.1 15962 24.4 3.2 

Region                                      

Europe1) MZ 8614 47.1 3.3 8062 46.5 3.3 
 

8614 24.4 3.1 8062 24.3 3.4 

Europe1) DZ 16040 47.6 3.3 14276 47.0 3.3 
 

16040 24.4 3.2 14276 24.4 3.3 

NA and 

Aus2) MZ 350 47.0 3.3 348 46.6 2.8 
 

350 24.3 2.8 348 23.9 2.8 

NA and 

Aus2) DZ 540 47.9 3.1 506 46.9 3.1 
 

540 24.0 2.9 506 24.1 3.1 

East- Asia3) MZ 1418 46.4 2.8 1624 45.7 2.8 
 

1418 24.2 2.5 1624 24.6 2.7 

East-Asia3) DZ 1096 46.2 2.9 1090 45.7 2.7 
 

1096 24.5 2.6 1090 24.6 2.6 

B i r t h  Y e a r                                

1970-1979 MZ 2650 47.2 2.7 1300 46.5 2.5 
 

2650 24.8 2.5 1300 25.0 2.7 

1970-1979 DZ 2997 47.7 2.7 1785 47.1 2.5 
 

2997 25.1 2.6 1785 25.2 2.7 

1980-1989 MZ 1802 47.1 2.7 1936 46.5 2.9 
 

1802 24.5 2.8 1936 24.8 2.9 

1980-1989 DZ 2916 47.7 2.7 2862 47.0 2.7  2916 25.0 2.6 2862 25.1 2.8 

1990-1999 MZ 4486 46.9 3.6 5160 46.3 3.5 
 

4486 24.0 3.3 5160 24.0 3.4 

1990-1999 DZ 8790 47.5 3.5 8422 46.9 3.4 
 

8790 24.0 3.3 8422 24.0 3.4 

2000-2013 MZ 1456 46.8 3.5 1658 46.1 3.5 
 

1456 24.3 3.3 1658 24.1 3.4 

2000-2013 DZ 3055 47.2 3.6 2893 46.5 3.4 
 

3055 24.3 3.1 2893 24.3 3.3 
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Figure legends  

 

Figure 1. Additive genetic (grey), shared environmental (black) and unique environmental 

(white) variances of birth size measures before and after standardization for gestational age 

(GA) by geographic-cultural region. 

 

Figure 2. Additive genetic (grey), shared environmental (black) and unique environmental 

(white) variances of birth size measures before and after standardization for gestational age 

(GA) by birth cohort. 

 

Figure 3. Total, additive genetic, shared environmental and unique environmental variances of 

birth weight by twin cohort. Au, Australian Twin Registry; Bo: Boston University Twin Project; 

Ca, Carolina African American Twin Study of Aging; Co, Colorado Twin Registry; EF, East 

Flanders Prospective Twin Survey; F12, Finntwin12; F16, Finntwin16; Ge, Gemini Study; GB, 

Guinea-Bissau Twin Study; Hu, Hungarian Twin Registry; It, Italian Twin Registry; Ja, 

Japanese Twin Cohort; Is, Longitudinal Israeli Study of Twins; Mi, Michigan Twins Study; 

MinC, Minnesota Twin Family Study; MinA, Minnesota Twin Registry; Mo, Mongolian Twin 

Registry; No, Norwegian Twin Registry; PETS, Peri/Postnatal Epigenetic Twins Study; Qi, 

Qingdao Twin Registry of Children; Qu, Quebec Newborn Twin Study; SwA, Swedish Young 

Male Twins Study of Adults; SwC, Swedish Young Male Twins Study of Children; TEDS, 

Twins Early Developmental Study; WJ, West Japan Twins and Higher Order Multiple Births 

Registry; Ne, Young Netherlands Twin Registry. 
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