8,221 research outputs found

    Edge excitations and Topological orders in rotating Bose gases

    Get PDF
    The edge excitations and related topological orders of correlated states of a fast rotating Bose gas are studied. Using exact diagonalization of small systems, we compute the energies and number of edge excitations, as well as the boson occupancy near the edge for various states. The chiral Luttinger-liquid theory of Wen is found to be a good description of the edges of the bosonic Laughlin and other states identified as members of the principal Jain sequence for bosons. However, we find that in a harmonic trap the edge of the state identified as the Moore-Read (Pfaffian) state shows a number of anomalies. An experimental way of detecting these correlated states is also discussed.Comment: Results extended to larger systems. Improved presentatio

    Study of the 2-d CP(N-1) models at \theta=0 and \pi

    Full text link
    We present numerical results for 2-d CP(N-1) models at \theta=0 and \pi obtained in the D-theory formulation. In this formulation we construct an efficient cluster algorithm and we show numerical evidence for a first order transition for CP(N-1\geq 2) models at \theta = \pi. By a finite size scaling analysis, we also discuss the equivalence in the continuum limit of the D-theory formulation of the 2-d CP(N-1) models and the usual lattice definition.Comment: 3 pages, 2 figures. Talk presented at Lattice2004(spin), Fermilab, June 21-26, 200

    Multiplet Effects in the Quasiparticle Band Structure of the f1f2f^1-f^2 Anderson Model

    Full text link
    In this paper, we examine the mean field electronic structure of the f1f2f^1-f^2 Anderson lattice model in a slave boson approximation, which should be useful in understanding the physics of correlated metals with more than one f electron per site such as uranium-based heavy fermion superconductors. We find that the multiplet structure of the f2f^2 ion acts to quench the crystal field splitting in the quasiparticle electronic structure. This is consistent with experimental observations in such metals as UPt3UPt_3.Comment: 9 pages, revtex, 3 uuencoded postscript figures attached at en

    Conductance oscillations in strongly correlated fractional quantum Hall line junctions

    Get PDF
    We present a detailed theory of transport through line junctions formed by counterpropagating single-branch fractional-quantum-Hall edge channels having different filling factors. Intriguing transport properties are exhibited when strong Coulomb interactions between electrons from the two edges are present. Such strongly correlated line junctions can be classified according to the value of an effective line-junction filling factor n that is the inverse of an even integer. Interactions turn out to affect transport most importantly for n=1/2 and n=1/4. A particularly interesting case is n=1/4 corresponding to, e.g., a junction of edge channels having filling factor 1 and 1/5, respectively. We predict its differential tunneling conductance to oscillate as a function of voltage. This behavior directly reflects the existence of novel Majorana-fermion quasiparticle excitations in this type of line junction. Experimental accessibility of such systems in current cleaved-edge overgrown samples enables direct testing of our theoretical predictions.Comment: 2 figures, 10 pages, RevTex4, v2: added second figure for clarit

    A Monte Carlo study of O(3) antiferromagnetic models in three dimensions

    Get PDF
    We study three antiferromagnetic formulations of the O(3) spin model in three dimensions by means of Monte Carlo simulations: 1. a two parameter σ\sigma model with nearest and next to nearest neighbors couplings in a cubic lattice; 2. a face centered cubic lattice with nearest neighbors interaction; 3. a cubic lattice with a set of fully frustrating couplings. We discuss in all cases the vacua properties and analyze the phase transitions. Using Finite Size Scaling analysis we conclude that all phase transitions found are of first order.Comment: 24 pages, uuencoded gzipped postscript file. 13 figures include

    Shape oscillation of a rotating Bose-Einstein condensate

    Full text link
    We present a theoretical and experimental analysis of the transverse monopole mode of a fast rotating Bose-Einstein condensate. The condensate's rotation frequency is similar to the trapping frequency and the effective confinement is only ensured by a weak quartic potential. We show that the non-harmonic character of the potential has a clear influence on the mode frequency, thus making the monopole mode a precise tool for the investigation of the fast rotation regime

    Degeneracies in the length spectra of metric graphs

    Full text link
    The spectral theory of quantum graphs is related via an exact trace formula with the spectrum of the lengths of periodic orbits (cycles) on the graphs. The latter is a degenerate spectrum, and understanding its structure (i.e.,finding out how many different lengths exist for periodic orbits with a given period and the average number of periodic orbits with the same length) is necessary for the systematic study of spectral fluctuations using the trace formula. This is a combinatorial problem which we solve exactly for complete (fully connected) graphs with arbitrary number of vertices.Comment: 13 pages, 7 figure

    X-ray and UV observations of nova V598 Puppis between 147 and 255 days after outburst

    Full text link
    Aims: The launch of Swift has allowed many more novae to be observed regularly over the X-ray band. Such X-ray observations of novae can reveal ejecta shocks and the nuclear burning white dwarf, allowing estimates to be made of the ejecta velocity. Methods: We analyse XMM-Newton and Swift X-ray and UV observations of the nova V598 Pup, which was initially discovered in the XMM-Newton slew survey. These data were obtained between 147 and 255 days after the nova outburst, and are compared with the earlier, brighter slew detection. Results: The X-ray spectrum consists of a super-soft source, with the soft emission becoming hotter and much fainter between days ~147 and ~172 after the outburst, and a more slowly declining optically thin component, formed by shocks with kT ~ 200-800 eV (corresponding to velocities of 400-800 km s^-1). The main super-soft phase had a duration of less than 130 days. The Reflection Grating Spectrometer data show evidence of emission lines consistent with optically thin emission of kT ~100 eV and place a limit on the density of the surrounding medium of log(n_e/cm^-3) < 10.4 at the 90 % level. The UV emission is variable over short timescales and fades by at least one magnitude (at lambda ~ 2246-2600 angstrom) between days 169 and 255.Comment: 6 pages, 5 figures, accepted for publication in A&
    corecore