6,744 research outputs found

    Edge states and conformal boundary conditions in super spin chains and super sigma models

    Full text link
    The sigma models on projective superspaces CP^{N+M-1|N} with topological angle theta=pi mod 2pi flow to non-unitary, logarithmic conformal field theories in the low-energy limit. In this paper, we determine the exact spectrum of these theories for all open boundary conditions preserving the full global symmetry of the model, generalizing recent work on the particular case M=0 [C. Candu et al, JHEP02(2010)015]. In the sigma model setting, these boundary conditions are associated with complex line bundles, and are labelled by an integer, related with the exact value of theta. Our approach relies on a spin chain regularization, where the boundary conditions now correspond to the introduction of additional edge states. The exact values of the exponents then follow from a lengthy algebraic analysis, a reformulation of the spin chain in terms of crossing and non-crossing loops (represented as a certain subalgebra of the Brauer algebra), and earlier results on the so-called one- and two-boundary Temperley Lieb algebras (also known as blob algebras). A remarkable result is that the exponents, in general, turn out to be irrational. The case M=1 has direct applications to the spin quantum Hall effect, which will be discussed in a sequel.Comment: 50 pages, 18 figure

    Dynamic subcellular localization of isoforms of the folate pathway enzyme serine hydroxymethyltransferase (SHMT) through the erythrocytic cycle of Plasmodium falciparum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The folate pathway enzyme serine hydroxymethyltransferase (SHMT) converts serine to glycine and 5,10-methylenetetrahydrofolate and is essential for the acquisition of one-carbon units for subsequent transfer reactions. 5,10-methylenetetrahydrofolate is used by thymidylate synthase to convert dUMP to dTMP for DNA synthesis. In <it>Plasmodium falciparum </it>an enzymatically functional SHMT (PfSHMTc) and a related, apparently inactive isoform (PfSHMTm) are found, encoded by different genes. Here, patterns of localization of the two isoforms during the parasite erythrocytic cycle are investigated.</p> <p>Methods</p> <p>Polyclonal antibodies were raised to PfSHMTc and PfSHMTm, and, together with specific markers for the mitochondrion and apicoplast, were employed in quantitative confocal fluorescence microscopy of blood-stage parasites.</p> <p>Results</p> <p>As well as the expected cytoplasmic occupancy of PfSHMTc during all stages, localization into the mitochondrion and apicoplast occurred in a stage-specific manner. Although early trophozoites lacked visible organellar PfSHMTc, a significant percentage of parasites showed such fluorescence during the mid-to-late trophozoite and schizont stages. In the case of the mitochondrion, the majority of parasites in these stages at any given time showed no marked PfSHMTc fluorescence, suggesting that its occupancy of this organelle is of limited duration. PfSHMTm showed a distinctly more pronounced mitochondrial location through most of the erythrocytic cycle and GFP-tagging of its N-terminal region confirmed the predicted presence of a mitochondrial signal sequence. Within the apicoplast, a majority of mitotic schizonts showed a marked concentration of PfSHMTc, whose localization in this organelle was less restricted than for the mitochondrion and persisted from the late trophozoite to the post-mitotic stages. PfSHMTm showed a broadly similar distribution across the cycle, but with a distinctive punctate accumulation towards the ends of elongating apicoplasts. In very late post-mitotic schizonts, both PfSHMTc and PfSHMTm were concentrated in the central region of the parasite that becomes the residual body on erythrocyte lysis and merozoite release.</p> <p>Conclusions</p> <p>Both PfSHMTc and PfSHMTm show dynamic, stage-dependent localization among the different compartments of the parasite and sequence analysis suggests they may also reversibly associate with each other, a factor that may be critical to folate cofactor function, given the apparent lack of enzymic activity of PfSHMTm.</p

    Temporal variations in meibomian gland structure—A pilot study

    Get PDF
    Purpose: To investigate whether there is a measurable change in meibomian gland morphological characteristics over the course of a day (12h) and over a month.Methods: The study enrolled 15 participants who attended a total of 11 study visits spanning a 5-week period. To assess diurnal changes in meibomian glands, seven visits were conducted on a single day, each 2h apart. For monthly assessment, participants attended an additional visit at the same time of the day every week for three consecutive weeks. Meibography using the LipiView® II system was performed at each visit, and meibomian gland morphological parameters were calculated using custom semi-automated software. Specifically, six central glands were analysed for gland length ratio, gland width, gland area, gland intensity and gland tortuosity.Results: The average meibomian gland morphological metrics did not exhibit significant changes during the course of a day or over a month. Nonetheless, certain individual gland metrics demonstrated notable variation over time, both diurnally and monthly. Specifically, meibomian gland length ratio, area, width and tortuosity exhibited significant changes both diurnally and monthly when assessed on a gland-by-gland basis.Conclusions: Meibomian glands demonstrated measurable structural change over short periods of time (hours and days). These results have implications for innovation in gland imaging and for developing precision monitoring of gland structure to assess meibomian gland  health more accurately

    Doubly resonant WW plus jet signatures at the LHC

    Full text link
    We present search prospects and phenomenology of doubly resonant signals that come from the decay of a neutral weak-singlet color-octet vector state \omega_8 into a lighter weak-triplet color-octet scalar \pi_8, which can arise in several theories beyond the Standard Model. Taking m_{\omega_8}-m_{\pi_8}>m_W, we demonstrate an analysis of the signals pp \to \omega_8 \to \pi^\pm_8 W^\mp (\pi^0_8 Z) \to g W^\pm W^\mp (g Z Z). The present 8 TeV LHC run is found to have the potential to exclude or discover the signal for a range of masses and parameters. The preferred search channel has a boosted W-tagged jet forming a resonance with a second hard jet, in association with a lepton and missing energy.Comment: 15 pages, 8 figures; references update

    A Method to Extract Potentials from the Temperature Dependence of Langmuir Constants for Clathrate-Hydrates

    Full text link
    It is shown that the temperature dependence of Langmuir constants contains all the information needed to determine spherically averaged intermolecular potentials. An analytical ``inversion'' method based on the standard statistical model of van der Waals and Platteeuw is presented which extracts cell potentials directly from experimental data. The method is applied to ethane and cyclopropane clathrate-hydrates, and the resulting potentials are much simpler and more meaningful than those obtained by the usual method of numerical fitting with Kihara potentials.Comment: 33 pages, 7 figures, to appear in Physica

    A RIPE3b1-like factor binds to a novel site in the human insulin promoter in a redox-dependent manner

    Get PDF
    AbstractIn the human insulin gene, a regulatory sequence upstream of the transcription start site at −229 to −258 (the E2 element) binds a ubiquitous factor USF. The present study led to the identification of a second factor, D0, that binds to an adjacent upstream site, the C2 element, that has previously not been described. The results demonstrate that D0 exhibits similar properties to RIPE3b1, a factor shown to be an important determinant of insulin gene β-cell-specific expression. Binding of D0 to the C2 element was abolished by the oxidising agent diamide, and the alkylating agent N-ethylmaleimide. The results indicate that expression of the insulin gene may be regulated by a redox-dependent pathway involving RIPE3b1 or a RIPE3b1-like factor

    The antiferromagnetic transition for the square-lattice Potts model

    Get PDF
    We solve the antiferromagnetic transition for the Q-state Potts model (defined geometrically for Q generic) on the square lattice. The solution is based on a detailed analysis of the Bethe ansatz equations (which involve staggered source terms) and on extensive numerical diagonalization of transfer matrices. It involves subtle distinctions between the loop/cluster version of the model, and the associated RSOS and (twisted) vertex models. The latter's continuum limit involves two bosons, one which is compact and twisted, and the other which is not, with a total central charge c=2-6/t, for sqrt(Q)=2cos(pi/t). The non-compact boson contributes a continuum component to the spectrum of critical exponents. For Q generic, these properties are shared by the Potts model. For Q a Beraha number [Q = 4 cos^2(pi/n) with n integer] the two-boson theory is truncated and becomes essentially Z\_{n-2} parafermions. Moreover, the vertex model, and, for Q generic, the Potts model, exhibit a first-order critical point on the transition line, i.e., the critical point is also the locus of level crossings where the derivatives of the free energy are discontinuous. In that sense, the thermal exponent of the Potts model is generically nu=1/2. Things are profoundly different for Q a Beraha number, where the transition is second order, with nu=(t-2)/2 determined by the psi\_1 parafermion. As one enters the adjacant Berker-Kadanoff phase, the model flows, for t odd, to a minimal model of CFT with c=1-6/t(t-1), while for t even it becomes massive. This provides a physical realization of a flow conjectured by Fateev and Zamolodchikov in the context of Z\_N integrable perturbations. Finally, we argue that the antiferromagnetic transition occurs as well on other two-dimensional lattices

    A procedure for the change point problem in parametric models based on phi-divergence test-statistics

    Full text link
    This paper studies the change point problem for a general parametric, univariate or multivariate family of distributions. An information theoretic procedure is developed which is based on general divergence measures for testing the hypothesis of the existence of a change. For comparing the accuracy of the new test-statistic a simulation study is performed for the special case of a univariate discrete model. Finally, the procedure proposed in this paper is illustrated through a classical change-point example

    Hot Interstellar Gas and Stellar Energy Feedback in the Antennae Galaxies

    Full text link
    We have analyzed Chandra archival observations of the Antennae galaxies to study the distribution and physical properties of its hot interstellar gas. Eleven distinct diffuse X-ray emission regions are selected according to their underlying interstellar structures and star formation activity. The X-ray spectra of these regions are used to determine their thermal energy contents and cooling timescales. Young star clusters in these regions are also identified and their photometric measurements are compared to evolutionary stellar population synthesis models to assess their masses and ages. The cluster properties are then used to determine the stellar wind and supernova energies injected into the ISM. Comparisons between the thermal energy in the hot ISM and the expected stellar energy input show that young star clusters are sufficient to power the X-ray-emitting gas in some, but not all, active star formation regions. Super-star clusters, with masses >= 1x10^5 M_sol, heat the ISM, but the yield of hot interstellar gas is not directly proportional to the cluster mass. Finally, there exist diffuse X-ray emission regions which do not show active star formation or massive young star clusters. These regions may be powered by field stars or low-mass clusters formed within the last ~100 Myr.Comment: 36 pages, 6 figures, 8 tables, 2 appendices, to appear in the Astrophysical Journal, April 20 issu

    Rectangular amplitudes, conformal blocks, and applications to loop models

    Full text link
    In this paper we continue the investigation of partition functions of critical systems on a rectangle initiated in [R. Bondesan et al, Nucl.Phys.B862:553-575,2012]. Here we develop a general formalism of rectangle boundary states using conformal field theory, adapted to describe geometries supporting different boundary conditions. We discuss the computation of rectangular amplitudes and their modular properties, presenting explicit results for the case of free theories. In a second part of the paper we focus on applications to loop models, discussing in details lattice discretizations using both numerical and analytical calculations. These results allow to interpret geometrically conformal blocks, and as an application we derive new probability formulas for self-avoiding walks.Comment: 46 page
    corecore