93 research outputs found

    Ab initio calculation of the neutron-proton mass difference

    Get PDF
    The existence and stability of atoms rely on the fact that neutrons are more massive than protons. The measured mass difference is only 0.14\% of the average of the two masses. A slightly smaller or larger value would have led to a dramatically different universe. Here, we show that this difference results from the competition between electromagnetic and mass isospin breaking effects. We performed lattice quantum-chromodynamics and quantum-electrodynamics computations with four nondegenerate Wilson fermion flavors and computed the neutron-proton mass-splitting with an accuracy of 300300 kilo-electron volts, which is greater than 00 by 55 standard deviations. We also determine the splittings in the Σ\Sigma, Ξ\Xi, DD and Ξcc\Xi_{cc} isospin multiplets, exceeding in some cases the precision of experimental measurements.Comment: 57 pages, 15 figures, 6 tables, revised versio

    Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretative problems

    Get PDF
    © 2016 Swedish Society for Anthropology and Geography Periglacial patterned ground (sorted circles and polygons) along an altitudinal profile at Juvflya in central Jotunheimen, southern Norway, is investigated using Schmidt-hammer exposure-age dating (SHD). The patterned ground surfaces exhibit R-value distributions with platycurtic modes, broad plateaus, narrow tails, and a negative skew. Sample sites located between 1500 and 1925 m a.s.l. indicate a distinct altitudinal gradient of increasing mean R-values towards higher altitudes interpreted as a chronological function. An established regional SHD calibration curve for Jotunheimen yielded mean boulder exposure ages in the range 6910 ± 510 to 8240 ± 495 years ago. These SHD ages are indicative of the timing of patterned ground formation, representing minimum ages for active boulder upfreezing and maximum ages for the stabilization of boulders in the encircling gutters. Despite uncertainties associated with the calibration curve and the age distribution of the boulders, the early-Holocene age of the patterned ground surfaces, the apparent cessation of major activity during the Holocene Thermal Maximum (HTM) and continuing lack of late-Holocene activity clarify existing understanding of the process dynamics and palaeoclimatic significance of large-scale sorted patterned ground as an indicator of a permafrost environment. The interpretation of SHD ages from patterned ground surfaces remains challenging, however, owing to their diachronous nature, the potential for a complex history of formation, and the influence of local, non-climatic factors

    One health, une seule santé

    Get PDF
    One Health, « Une seule santĂ© », est une stratĂ©gie mondiale visant Ă  dĂ©velopper les collaborations interdisciplinaires pour la santĂ© humaine, animale et environnementale. Elle promeut une approche intĂ©grĂ©e, systĂ©mique et unifiĂ©e de la santĂ© aux Ă©chelles locale, nationale et mondiale, afin de mieux affronter les maladies Ă©mergentes Ă  risque pandĂ©mique, mais aussi s'adapter aux impacts environnementaux prĂ©sents et futurs. Bien que ce mouvement s’étende, la littĂ©rature en français reste rare. Traduit de l’anglais, coordonnĂ© par d’éminents Ă©pidĂ©miologistes et s'appuyant sur un large panel d' approches scientifiques rarement rĂ©unies autour de la santĂ©, cet ouvrage retrace les origines du concept et prĂ©sente un contenu pratique sur les outils mĂ©thodologiques, la collecte de donnĂ©es, les techniques de surveillance et les plans d’étude. Il combine recherche et pratique en un seul volume et constitue un ouvrage de rĂ©fĂ©rence unique pour la santĂ© mondiale

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
    • 

    corecore