427 research outputs found

    A new invertebrate member of the p53 gene family is developmentally expressed and responds to polychlorinated biphenyls.

    Get PDF
    The cell-cycle checkpoint protein p53 both directs terminal differentiation and protects embryos from DNA damage. To study invertebrate p53 during early development, we identified three differentially expressed p53 family members (p53, p97, p120) in the surf clam, Spisula solidissima. In these mollusks, p53 and p97 occur in both embryonic and adult tissue, whereas p120 is exclusively embryonic. We sequenced, cloned, and characterized p120 cDNA. The predicted protein, p120, resembles p53 across all evolutionarily conserved regions and contains a C-terminal extension with a sterile alpha motif (SAM) as in p63 and p73. These vertebrate forms of p53 are required for normal inflammatory, epithelial, and neuronal development. Unlike clam p53 and p97, p120 mRNA and protein levels are temporally expressed in embryos, with mRNA levels decreasing with increasing p120 protein (R(2) = 0.97). Highest surf clam p120 mRNA levels coincide with the onset of neuronal growth. In earlier work we have shown that neuronal development is altered by exposure to polychlorinated biphenyls (PCBs), a neurotoxic environmental contaminant. In this study we show that PCBs differentially affect expression of the three surf clam p53 family members. p120 mRNA and protein are reduced the most and earliest in development, p97 protein shows a smaller and later reduction, and p53 protein levels do not change. For the first time we report that unlike p53 and p97, p120 is specifically embryonic and expressed in a time-dependent manner. Furthermore, p120 responds to PCBs by 48 hr when PCB-induced suppression of the serotonergic nervous system occurs

    TERMINAL FLOWER-1/CENTRORADIALIS inhibits tuberization via protein interaction with the tuberigen activation complex

    Get PDF
    This work was funded by the Scottish Government Rural and Environment Science and Analytical Services Division as part of the Strategic Research Programme 2016-2021, by a GCRF Foundation Awards for Global Agricultural and Food Systems Research funded by the BBSRC project BB/P022553/1 and also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 835704. Research in Prat’s lab was funded by the Spanish Ministerio de Economía y Competitividad BIO2015-73019-EXP, and the aligned Japan EIG CONCERT (PIA102017-1) projects.Potato tuber formation is a secondary developmental program by which cells in the subapical stolon region divide and radially expand, to further differentiate into starch accumulating parenchyma. Whilst some details of the molecular pathway that signals tuberization are known, important gaps in our knowledge persist. Here the role of a member of the TERMINAL FLOWER 1/ CENTRORADIALIS gene family (termed StCEN ) in the negative control of tuberization is demonstrated for the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines over‐expressing this gene display delayed tuberization and reduced tuber yield. Protein‐protein interaction studies (yeast two hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays we show that the StSP6A tuberization signal is an activation target of the tuberigen activation complex, and that co‐expression of StCEN blocks StFD‐Like‐1 activation of the StSP6A gene. Transcriptomic analysis of transgenic lines mis‐expressing StCEN identify early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberization by directly antagonizing StSP6A function in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield, through the selection of genotypes with reduced StCEN expression.Publisher PDFPeer reviewe

    Thinking about Later Life: Insights from the Capability Approach

    Get PDF
    A major criticism of mainstream gerontological frameworks is the inability of such frameworks to appreciate and incorporate issues of diversity and difference in engaging with experiences of aging. Given the prevailing socially structured nature of inequalities, such differences matter greatly in shaping experiences, as well as social constructions, of aging. I argue that Amartya Sen’s capability approach (2009) potentially offers gerontological scholars a broad conceptual framework that places at its core consideration of human beings (their values) and centrality of human diversity. As well as identifying these key features of the capability approach, I discuss and demonstrate their relevance to thinking about old age and aging. I maintain that in the context of complex and emerging identities in later life that shape and are shaped by shifting people-place and people-people relationships, Sen’s capability approach offers significant possibilities for gerontological research

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    Initial Sequence and Comparative Analysis of the Cat Genome

    Get PDF
    The genome sequence (1.9-fold coverage) of an inbred Abyssinian domestic cat was assembled, mapped, and annotated with a comparative approach that involved cross-reference to annotated genome assemblies of six mammals (human, chimpanzee, mouse, rat, dog, and cow). The results resolved chromosomal positions for 663,480 contigs, 20,285 putative feline gene orthologs, and 133,499 conserved sequence blocks (CSBs). Additional annotated features include repetitive elements, endogenous retroviral sequences, nuclear mitochondrial (numt) sequences, micro-RNAs, and evolutionary breakpoints that suggest historic balancing of translocation and inversion incidences in distinct mammalian lineages. Large numbers of single nucleotide polymorphisms (SNPs), deletion insertion polymorphisms (DIPs), and short tandem repeats (STRs), suitable for linkage or association studies were characterized in the context of long stretches of chromosome homozygosity. In spite of the light coverage capturing ∼65% of euchromatin sequence from the cat genome, these comparative insights shed new light on the tempo and mode of gene/genome evolution in mammals, promise several research applications for the cat, and also illustrate that a comparative approach using more deeply covered mammals provides an informative, preliminary annotation of a light (1.9-fold) coverage mammal genome sequence

    Admixture in the Hispanics of the San Luis Valley, Colorado, and its implications for complex trait gene mapping

    Full text link
    Hispanic populations are a valuable resource that can and should facilitate the identification of complex trait genes by means of admixture mapping (AM). In this paper we focus on a particular Hispanic population living in the San Luis Valley (SLV) in Southern Colorado.We used a set of 22 Ancestry Informative Markers (AIMs) to describe the admixture process and dynamics in this population. AIMs are defined as genetic markers that exhibit allele frequency differences between parental populations ≥30%, and are more informative for studying admixed populations than random markers. The ancestral proportions of the SLV Hispanic population are estimated as 62.7 ± 2.1% European, 34.1 ± 1.9% Native American and 3.2 ± 1.5% West African. We also estimated the ancestral proportions of individuals using these AIMs. Population structure was demonstrated by the excess association of unlinked markers, the correlation between estimates of admixture based on unlinked marker sets, and by a highly significant correlation between individual Native American ancestry and skin pigmentation (R 2 = 0.082, p < 0.001). We discuss the implications of these findings in disease gene mapping efforts.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65937/1/j.1529-8817.2003.00084.x.pd

    Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, <it>Riftia pachyptila</it>, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift.</p> <p>Results</p> <p>Genetic differentiation (<it>F</it><sub><it>ST</it></sub>) among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically.</p> <p>Conclusions</p> <p>Compared to other vent species, DNA sequence diversity is extremely low in <it>R. pachyptila</it>. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (re)colonization events.</p

    Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection

    Get PDF
    A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa
    corecore