635 research outputs found

    The personal experience of parenting a child with Juvenile Huntington’s Disease: perceptions across Europe

    Get PDF
    The study reported here presents a detailed description of what it is like to parent a child with juvenile Huntington’s disease in families across four European countries. Its primary aim was to develop and extend findings from a previous UK study. The study recruited parents from four European countries: Holland, Italy, Poland and Sweden,. A secondary aim was to see the extent to which the findings from the UK study were repeated across Europe and the degree of commonality or divergence across the different countries. Fourteen parents who were the primary caregiver took part in a semistructured interview. These were analyzed using an established qualitative methodology, interpretative phenomenological analysis. Five analytic themes were derived from the analysis: the early signs of something wrong; parental understanding of juvenile Huntington’s disease; living with the disease; other people’s knowledge and understanding; and need for support. These are discussed in light of the considerable convergence between the experiences of families in the United Kingdom and elsewhere in Europe

    An Amish founder variant consolidates disruption of CEP55 as a cause of hydranencephaly and renal dysplasia

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this record.The centrosomal protein 55 kDa (CEP55 (OMIM 610000)) plays a fundamental role in cell cycle regulation and cytokinesis. However, the precise role of CEP55 in human embryonic growth and development is yet to be fully defined. Here we identified a novel homozygous founder frameshift variant in CEP55, present at low frequency in the Amish community, in two siblings presenting with a lethal foetal disorder. The features of the condition are reminiscent of a Meckel-like syndrome comprising of Potter sequence, hydranencephaly, and cystic dysplastic kidneys. These findings, considered alongside two recent studies of single families reporting loss of function candidate variants in CEP55, confirm disruption of CEP55 function as a cause of this clinical spectrum and enable us to delineate the cardinal clinical features of this disorder, providing important new insights into early human development.Medical Research CouncilNewlife Foundation for disabled childre

    Human Embryonic Stem Cells Differentiated to Lung Lineage-Specific Cells Ameliorate Pulmonary Fibrosis in a Xenograft Transplant Mouse Model

    Get PDF
    Our aim was to differentiate human (h) embryonic stem (ES) cells into lung epithelial lineage-specific cells [i.e., alveolar epithelial type I (AEI) and type II (AEII) cells and Clara cells] as the first step in the development of cell-based strategies to repair lung injury in the bleomycin mouse model of idiopathic pulmonary fibrosis (IPF). A heterogeneous population of non-ciliated lung lineage-specific cells was derived by a novel method of embryoid body (EB) differentiation. This differentiated human cell population was used to modulate the profibrotic phenotype in transplanted animals.Omission or inclusion of one or more components in the differentiation medium skewed differentiation of H7 hES cells into varying proportions of AEI, AEII, and Clara cells. ICG-001, a small molecule inhibitor of Wnt/β-catenin/Creb-binding protein (CBP) transcription, changed marker expression of the differentiated ES cells from an AEII-like phenotype to a predominantly AEI-like phenotype. The differentiated cells were used in xenograft transplantation studies in bleomycin-treated Rag2γC(-/-) mice. Human cells were detected in lungs of the transplanted groups receiving differentiated ES cells treated with or without ICG-001. The increased lung collagen content found in bleomycin-treated mice receiving saline was significantly reduced by transplantation with the lung-lineage specific epithelial cells differentiated from ES cells. A significant increase in progenitor number was observed in the airways of bleomycin-treated mice after transplantation of differentiated hES cells.This study indicates that ES cell-based therapy may be a powerful novel approach to ameliorate lung fibrosis

    PRUNE is crucial for normal brain development and mutated in microcephaly with neurodevelopmental impairment.

    Get PDF
    PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    True 99th centile of high sensitivity cardiac troponin for hospital patients: prospective, observational cohort study?

    Get PDF
    OBJECTIVE To determine the distribution, and specifically the true 99th centile, of high sensitivity cardiac troponin I (hs-cTnI) for a whole hospital population by applying the hs-cTnI assay currently used routinely at a large teaching hospital. DESIGN Prospective, observational cohort study. SETTING University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom, between 29 June 2017 and 24 August 2017. PARTICIPANTS 20000 consecutive inpatients and outpatients undergoing blood tests for any clinical reason. Hs-cTnI concentrations were measured in all study participants and nested for analysis except when the supervising doctor had requested hs-cTnI for clinical reasons. MAIN OUTCOME MEASURES Distribution of hs-cTnI concentrations of all study participants and specifically the 99th centile. RESULTS The 99th centile of hs-cTnI for the whole population was 296 ng/L compared with the manufacturer’s quoted level of 40 ng/L (currently used clinically as the upper limit of normal; ULN). Hs-cTnI concentrations were greater than 40 ng/L in one in 20 (5.4%, n=1080) of the total population. After excluding participants diagnosed as having acute myocardial infarction (n=122) and those in whom hs-cTnI was requested for clinical reasons (n=1707), the 99th centile was 189 ng/L for the remainder (n=18171). The 99th centile was 563 ng/L for inpatients (n=4759) and 65 ng/L for outpatients (n=9280). Patients from the emergency department (n=3706) had a 99th centile of 215 ng/L, with 6.07% (n=225) greater than the recommended ULN. 39.02% (n=48) of all patients from the critical care units (n=123) and 14.16% (n=67) of all medical inpatients had an hs-cTnI concentration greater than the recommended ULN. CONCLUSIONS Of 20000 consecutive patients undergoing a blood test for any clinical reason at our hospital, one in 20 had an hs-cTnI greater than the recommended ULN. These data highlight the need for clinical staff to interpret hs-cTnI concentrations carefully, particularly when applying the recommended ULN to diagnose acute myocardial infarction, in order to avoid misdiagnosis in the absence of an appropriate clinical presentation. TRIAL REGISTRATION Clinicaltrials.gov NCT0304778

    CAFET Algorithm Reveals Wnt/PCP Signature in Lung Squamous Cell Carcinoma

    Get PDF
    We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC) samples and developed a new algorithm called Coverage Analysis with Fisher’s Exact Test (CAFET) to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC) and adenocarcinoma (AC) subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP) pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis

    AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington's disease.

    Get PDF
    Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene. To date, there is no treatment to halt or reverse the course of HD. Lowering of either total or only the mutant HTT expression is expected to have therapeutic benefit. This can be achieved by engineered micro (mi)RNAs targeting HTT transcripts and delivered by an adeno-associated viral (AAV) vector. We have previously showed a miHTT construct to induce total HTT knock-down in Hu128/21 HD mice, while miSNP50T and miSNP67T constructs induced allele-selective HTT knock-down in vitro. In the current preclinical study, the mechanistic efficacy and gene specificity of these selected constructs delivered by an AAV serotype 5 (AAV5) vector was addressed using an acute HD rat model. Our data demonstrated suppression of mutant HTT messenger RNA, which almost completely prevented mutant HTT aggregate formation, and ultimately resulted in suppression of DARPP-32-associated neuronal dysfunction. The AAV5-miHTT construct was found to be the most efficient, although AAV5-miSNP50T demonstrated the anticipated mutant HTT allele selectivity and no passenger strand expression. Ultimately, AAV5-delivered-miRNA-mediated HTT lowering did not cause activation of microglia or astrocytes suggesting no immune response to the AAV5 vector or therapeutic precursor sequences. These preclinical results suggest that using gene therapy to knock-down HTT may provide important therapeutic benefit for HD patients and raised no safety concerns, which supports our ongoing efforts for the development of an RNA interference-based gene therapy product for HD
    corecore