3,178 research outputs found
The radio luminosity function of radio-loud quasars from the 7C Redshift Survey
We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C
Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density
S_151 > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of
these have sufficient extended flux to meet the selection criteria, 18 of these
have steep radio spectra (hereafter denoted as SSQs). The key advantage of this
sample over most samples of RLQs is the lack of an optical magnitude limit. By
combining the 7C and 3CRR samples, we have investigated the properties of RLQs
as a function of redshift z and radio luminosity L_151.
We derive the radio luminosity function (RLF) of RLQs and find that the data
are well fitted by a single power-law with slope alpha_1=1.9. We find that
there must be a break in the RLQ RLF at log_10(L_151 / W Hz^-1 sr^-1) < 27, in
order for the models to be consistent with the 7C and 6C source counts. The
z-dependence of the RLF follows a one-tailed gaussian which peaks at z=1.7. We
find no evidence for a decline in the co-moving space density of RLQs at higher
redshifts.
A positive correlation between the radio and optical luminosities of SSQs is
observed, confirming a result of Serjeant et al. (1998). We are able to rule
out this correlation being due to selection effects or biases in our combined
sample. The radio-optical correlation and best-fit model RLF enable us to
estimate the distribution of optical magnitudes of quasars in samples selected
at low radio frequencies. We conclude that for samples with S_151 < 1 Jy one
must use optical data significantly deeper than the POSS-I limit (R approx 20),
in order to avoid severe incompleteness.Comment: 28 pages with 13 figures. To appear in MNRA
Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37
We present near-infrared imaging and spectroscopic observations of two FR II
high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2),
obtained with the Hubble, Keck, and Hale Telescopes. High resolution images
were taken with filters both in and out of strong emission lines, and together
with the spectroscopic data, the properties of the line and continuum emissions
were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that
strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to
the broad-band fluxes much more significantly than previously estimated (80%
vs. 20-40%), and that when the continuum sources are imaged through line-free
filters, they show an extremely compact morphology with a high surface
brightness. If we use the R^1/4-law parametrization, their effective radii
(r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at
r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the
former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is
predicted from the I(B)-r(e) correlation. Although exponential profiles produce
equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with
respect to the z~1 3CR radio galaxies, the light distribution of these two
HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a
flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a
local giant elliptical galaxy. Although this difference may be explained in
terms of a varying degree of star formation, the similarities of their surface
brightness profiles and the submillimeter detection of 4C 39.37 might suggest
that the intrinsic spectra is equally blue (young stars or an AGN), and that
the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in
Astronomical Journa
Recommended from our members
Project report: Evaluation of two post-graduate pre-registration nursing modules âFinding the Blendâ: An evaluation of the balance between online and face to face learning and teaching in a blended curriculum
In the School of Health Sciences we have adopted a blended learning approach for the delivery of the current nursing curriculum. It is intended to enhance and extend the learning opportunities for students.
This approach makes full use of available learning technologies whilst recognising the value of face to face interaction and facilitation. It fosters supportive and collaborative learning networks amongst students and encourages deep learning by engaging students in incremental learning tasks and, student directed learning. It also enables students to self- pace their learning.
As our nursing programme is being implemented we have engaged both academics and students in a systematic and iterative evaluation of the blended aspects of the programme.
Our aims were to:
a) Investigate how students experience the current balance between their classroom and online activities
b) Evaluate the effectiveness of the range of activities, both online and face to face
c) Identify points of good practice based on project evaluation and available literature.
In this paper we share the results of our evaluation and highlight key messages for further development and improvement of designing the âblendâ. Our recommendations may be beneficial for design teams who may need to engage in similar projects in the future
On Star Formation and the Non-Existence of Dark Galaxies
We investigate whether a baryonic dark galaxy or `galaxy without stars' could
persist indefinitely in the local universe, while remaining stable against star
formation. To this end, a simple model has been constructed to determine the
equilibrium distribution and composition of a gaseous protogalactic disk.
Specifically, we determine the amount of gas that will transit to a Toomre
unstable cold phase via the H2 cooling channel in the presence of a UV--X-ray
cosmic background radiation field.
All but one of the models are predicted to become unstable to star formation.
Moreover, we find that all our model objects would be detectable via HI line
emission, even in the case that star formation is potentially avoided. These
results are consistent with the non-detection of isolated extragalactic HI
clouds with no optical counterpart (galaxies without stars) by HIPASS.
Additionally, where star formation is predicted to occur, we determine the
minimum interstellar radiation field required to restore gravothermal
stability, which we then relate to a minimum global star formation rate. This
leads to the prediction of a previously undocumented relation between HI mass
and star formation rate that is observed for a wide variety of dwarf galaxies
in the HI mass range 10^8--10^10 M_sun. The existence of such a relation
strongly supports the notion that the well observed population of dwarf
galaxies represent the minimum rates of self-regulating star formation in the
universe. (Barely abridged)Comment: 19 pages, 8 figures, TeX using emulateapj.cls, v2 accepted for
publication in ApJ (16/8/5) with one figure deleted and a number of minor
clarifying revision
Extremely red objects in the UKIDSS Ultra Deep Survey Early Data Release
We construct a sample of extremely red objects (EROs) within the UKIDSS Ultra Deep Survey by combining the Early Data Release with optical data from the Subaru/XMMâNewton Deep Field. We find a total of 3715 objects over 2013 arcmin2 with RâK > 5.3 and K†20.3, which is a higher surface density than found by previous studies. This is partly due to our ability to use a small aperture in which to measure colours, but is also the result of a genuine overdensity of objects compared to other fields. We separate our sample into passively evolving and dusty star-forming galaxies using their RJK colours and investigate their radio properties using a deep radio map. The dusty population has a higher fraction of individually detected radio sources and a higher mean radio flux density among the undetected objects, but the passive population has a higher fraction of bright radio sources, suggesting that active galactic nuclei are more prevalent among the passive ERO population
Detection of 6 K gas in Ophiuchus D
Cold cores in interstellar molecular clouds represent the very first phase in
star formation. The physical conditions of these objects are studied in order
to understand how molecular clouds evolve and how stellar masses are
determined. The purpose of this study is to probe conditions in the dense,
starless clump Ophichus D (Oph D). The ground-state (1(10)-1(11)) rotational
transition of ortho-H2D+ was observed with APEX towards the density peak of Oph
D. The width of the H2D+ line indicates that the kinetic temperature in the
core is about 6 K. So far, this is the most direct evidence of such cold gas in
molecular clouds. The observed H2D+ spectrum can be reproduced with a
hydrostatic model with the temperature increasing from about 6 K in the centre
to almost 10 K at the surface. The model is unstable against any increase in
the external pressure, and the core is likely to form a low-mass star. The
results suggest that an equilibrium configuration is a feasible intermediate
stage of star formation even if the larger scale structure of the cloud is
thought to be determined by turbulent fragmentation. In comparison with the
isothermal case, the inward decrease in the temperature makes smaller, i.e.
less massive, cores susceptible to externally triggered collapse.Comment: 7 pages, 5 figures, accepted for Astronomy and Astrophysic
Lunar lander conceptual design
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers
Photobase Generator Enabled Pitch Division: A Progress Report
Pitch division lithography (PDL) with a photobase generator (PBG) allows printing of grating images with twice the pitch of a mask. The proof-of-concept has been published in the previous paper[1, 2] and demonstrated by others[1]. Forty five nm half-pitch (HP) patterns were produced using a 90nm HP mask, but the image had line edge roughness (LER) that does not meet requirements. Efforts have been made to understand and improve the LER in this process. Challenges were summarized toward low LER and good performing pitch division. Simulations and analysis showed the necessity for an optical image that is uniform in the z direction in order for pitch division to be successful. Two-stage PBGs were designed for enhancement of resist chemical contrast. New pitch division resists with polymer-bound PAGs and PBGs, and various PBGs were tested. This paper focuses on analysis of the LER problems and efforts to improve patterning performance in pitch division lithography.Chemical Engineerin
Near-Infrared Studies of V1280 Sco (Nova Scorpii 2007)
We present spectroscopic and photometric results of Nova V1280 Sco which was
discovered in outburst in early 2007 February. The large number of spectra
obtained of the object leads to one of the most extensive, near-infrared
spectral studies of a classical nova. The spectra evolve from a P-Cygni phase
to an emission-line phase and at a later stage is dominated by emission from
the dust that formed in this nova. A detailed model is computed to identify and
study characteristics of the spectral lines. Inferences from the model address
the vexing question of which novae have the ability to form dust. It is
demonstrated, and strikingly corroborated with observations, that the presence
of lines in the early spectra of low-ionization species like Na and Mg -
indicative of low temperature conditions - appear to be reliable indicators
that dust will form in the ejecta. It is theoretically expected that mass loss
during a nova outburst is a sustained process. Spectroscopic evidence for such
a sustained mass loss, obtained by tracing the evolution of a P-Cygni feature
in the Brackett gamma line, is presented here allowing a lower limit of 25-27
days to be set for the mass-loss duration. Photometric data recording the
nova's extended 12 day climb to peak brightness after discovery is used to
establish an early fireball expansion and also show that the ejection began
well before maximum brightness. The JHK light curves indicate the nova had a
fairly strong second outburst around 100 days after the first.Comment: Accepted in MNRAS. The paper contains 8 figures and 4 tables. Few
typographical errors were correcte
- âŠ