258 research outputs found

    Confirmation of the Electrostatic Self-Assembly of Nanodiamonds

    Full text link
    A reliable explanation for the underlying mechanism responsible for the persistent aggregation and self-assembly of colloidal 5 nm diamond nanoparticles is critical to the development of nanodiamond-based technologies. Although a number of mechanisms have been proposed, validation has been hindered by the inherent difficulty associated with the identification and characterisation of the inter-particle interfaces. In this paper we present results of high resolution aberration corrected electron microscopy and complementary computer simulations to explicate the features involved, and confirm the electrostatic interaction mechanism as the most probable cause for the formation of agglutinates and agglomerates of primary particles.Comment: 9 pages (including Supplementary Information), accepted for publication by Nanoscal

    Structural changes during the switching transition of chalcogenide selector devices

    Get PDF
    Ovonic threshold switches are a favored choice for chalcogenide-based amorphous (a-) GeSex selector devices used in cross-point arrays of nonvolatile memories. Previous models of their nonlinear high-field conduction proposed a largely electronic-only switching mechanism, within a fixed density of electronic states. Here, we use a density functional molecular-dynamics supercell calculation to show that the high-current excited state configuration of a-GeSex has structural changes such as additional Ge-Ge bonds and overcoordinated Ge sites, giving lower effective mass, more delocalized conduction states, and a lower ON resistance.We acknowledge the funding from the EC H2020 project Phase change switch

    Discovering electron transfer driven changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O)

    Full text link
    Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of property-, bond breaking- and quantum-mechanical bonding descriptors have been applied. The outcome of our explorations reveals an electron transfer driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in beta-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e. Born effective charge, dielectric function, effective coordination number (ECON) and mode-specific Grueneisen parameter, and in bond breaking descriptors (PME). Metavalent bonding collapses, if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor materials properties such as the chemical bond and electronic polarizability, optical band gap and optical interband transitions characterized by the imaginary part of the dielectric function. Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design

    The melting curve of iron at extreme pressures: implications for planetary cores

    Full text link
    Exoplanets with masses similar to that of Earth have recently been discovered in extrasolar systems. A first order question for understanding their dynamics is to know whether they possess Earth like liquid metallic cores. However, the iron melting curve is unknown at conditions corresponding to planets of several times the Earth's mass (over 1500 GPa for planets with 10 times the Earth's mass (ME)). In the density-temperature region of the cores of those super-Earths, we calculate the iron melting curve using first principle molecular dynamics simulations based on density functional theory. By comparing this melting curve with the calculated thermal structure of Super Earths, we show that planets heavier than 2ME, have solid cores, thus precluding the existence of an internal metallic-core driven magnetic field. The iron melting curve obtained in this study exhibits a steeper slope than any calculated planetary adiabatic temperature profile rendering the presence of molten metallic cores less likely as sizes of terrestrial planets increase

    Transparent dense sodium

    Full text link
    Under pressure, metals exhibit increasingly shorter interatomic distances. Intuitively, this response is expected to be accompanied by an increase in the widths of the valence and conduction bands and hence a more pronounced free-electron-like behaviour. But at the densities that can now be achieved experimentally, compression can be so substantial that core electrons overlap. This effect dramatically alters electronic properties from those typically associated with simple free-electron metals such as lithium and sodium, leading in turn to structurally complex phases and superconductivity with a high critical temperature. But the most intriguing prediction - that the seemingly simple metals Li and Na will transform under pressure into insulating states, owing to pairing of alkali atoms - has yet to be experimentally confirmed. Here we report experimental observations of a pressure-induced transformation of Na into an optically transparent phase at 200 GPa (corresponding to 5.0-fold compression). Experimental and computational data identify the new phase as a wide bandgap dielectric with a six-coordinated, highly distorted double-hexagonal close-packed structure. We attribute the emergence of this dense insulating state not to atom pairing, but to p-d hybridizations of valence electrons and their repulsion by core electrons into the lattice interstices. We expect that such insulating states may also form in other elements and compounds when compression is sufficiently strong that atomic cores start to overlap strongly.Comment: Published in Nature 458, 182-185 (2009

    Strong-correlation effects in Born effective charges

    Full text link
    Large values of Born effective charges are generally considered as reliable indicators of the genuine tendency of an insulator towards ferroelectric instability. However, these quantities can be very much influenced by strong electron correlation and metallic behavior, which are not exclusive properties of ferroelectric materials. In this paper we compare the Born effective charges of some prototypical ferroelectrics with those of magnetic, non-ferroelectric compounds using a novel, self-interaction free methodology that improves on the local-density approximation description of the electronic properties. We show that the inclusion of strong-correlation effects systermatically reduces the size of the Born effective charges and the electron localization lengths. Furthermore we give an interpretation of the Born effective charges in terms of band energy structure and orbital occupations which can be used as a guideline to rationalize their values in the general case.Comment: 10 pages, 4 postscript figure

    Assessing the benefits and usefulness of Schwartz Centre Rounds in Second-Year Medical Students using Clinical Educator-Facilitated Group Work Session: not just “A Facilitated Moan”!

    Get PDF
    Background An experiential curriculum exposing medical students to the clinic early has many benefits but comes with the emotional stress this environment engenders. Schwartz rounds (SR) are an effective means to combat emotional stress and increasingly used in UK and USA hospitals. Recent studies show that the SR format may also provide benefits for medical students. This study aimed to investigate whether the guidance of SR in second year medical students provides the same benefits as to healthcare professionals. Methods SR assessment involved 83 second year MBChB students in facilitated groupwork sessions. Topics discussed were “change and resilience” and “duty of candour”. Students completed a Likert Scale questionnaire evaluating outcomes proffered by the Point of Care Foundation in collaboration with the Schwartz Foundation, with freeform feedback. Results There was an 86% completion rate with 25% providing written feedback. Participants were more likely to agree than disagree that SR were beneficial. SR effectiveness in enhancing students’ working relationship awareness and skills was strongly correlated with understanding the purpose of, and engagement with, the SR (P<0.001). Similarly, engagement with the SR was strongly correlated with self-reporting of enhanced patient-centredness (P < 0.001). Freeform feedback could be grouped into five themes that revolved around understanding of the SR and engagement with the process. Many positive comments regarded the SR as a forum not only to “learn experientially” but to so in a “safe environment”. Many negative comments stemmed from students not seeing any benefits of engagement with the SR, in that sharing experiences was “unbeneficial”, “empathy is inherent and not learnt”, or that sharing emotional problems is simply “moaning”. Conclusion SRs are an effective way of fostering empathy and understanding towards patients and colleagues. However, for the students to benefit fully from the SR it is necessary for them to engage and understand the process. Therefore, for the successful implementation of SR into pre-clinical medical education, it is important to help students realise that SR are not merely a “facilitated whinge”

    Car make and model recognition under limited lighting conditions at night

    Get PDF
    Car make and model recognition (CMMR) has become an important part of intelligent transport systems. Information provided by CMMR can be utilized when license plate numbers cannot be identified or fake number plates are used. CMMR can also be used when a certain model of a vehicle is required to be automatically identified by cameras. The majority of existing CMMR methods are designed to be used only in daytime when most of the car features can be easily seen. Few methods have been developed to cope with limited lighting conditions at night where many vehicle features cannot be detected. The aim of this work was to identify car make and model at night by using available rear view features. This paper presents a one-class classifier ensemble designed to identify a particular car model of interest from other models. The combination of salient geographical and shape features of taillights and license plates from the rear view is extracted and used in the recognition process. The majority vote from support vector machine, decision tree, and k-nearest neighbors is applied to verify a target model in the classification process. The experiments on 421 car makes and models captured under limited lighting conditions at night show the classification accuracy rate at about 93 %

    The Effect of Treating Bacterial Vaginosis on Preterm Labor

    Get PDF
    Objective: Multiple studies suggest that bacterial vaginosis (BV) causes preterm labor; yet its routine treatment remains controversial. In order to help to elucidate this controversy, we performed a thorough review of studies with levels of evidence ranging from I to II–II. Methods: We searched for all of the studies from the years 1994 to 2001 via Medline’s database, including MD Consult and Ovid Mednet. Results: Several trials discovered a decrease in the incidence of preterm labor when BV was treated, but most of those trials were performed on women with a history of preterm labor. However, the majority of trials reviewed advise against treatment of a general low-risk obstetric population, as there was no significant decrease in preterm labor. Conclusions: Therefore, based on the above studies and the current guidelines of the Centers for Disease Control and Prevention (CDC), treating pregnant women in high-risk populations who are diagnosed with BV provides the clinician with an opportunity to possibly prevent preterm labor in this population. In nulliparous women without a history of preterm birth, treatment is recommended if other risk factors are present (e.g. gonorrhea or chlamydia). However, in the general low-risk populations, routine screening is not indicated
    • …
    corecore