897 research outputs found

    The Influence of Gamma-rays on the Injury and Chromosomal Aberrations of Long Bean (Vigna sesquipedalis, Fruw.)

    Get PDF
    The effects of gamma-rays on three varieties of long bean (Vigna sesquipedalis, Fruw), namely Melaka, Local Black and Local Long were studied using Jive doses ranging from 10 to 50 kR. Both Chromosomal aberrations and characteristics related to physiological damage were used to study radiation sensitivity of the varieties. In general, gamma radiation did not affect % seed germination but caused a significant reduction in characteristics related to survival, growth and fertility. Percentage chromosomal aberrations also increased with increasing dose. As the measurement of seedling height is simple, quick and highly correlated with most characteristics studied, it could be a useful parameter in the study of radiation effects on long bean. Using a critenrion of approximately 30% reduction in seedling height or 50% lethality, it is suggested that doses ranging from 30 to 50 kR would be suitable for mutation induction in long bean

    Ants, fire, and bark traits affect how African savanna trees recover following damage

    Get PDF
    Bark damage resulting from elephant feeding is common in African savanna trees with subsequent interactions with fire, insects, and other pathogens often resulting in tree mortality. Yet, surprisingly little is known about how savanna trees respond to bark damage. We addressed this by investigating how the inner bark of marula (Sclerocarya birrea), a widespread tree species favoured by elephants, recovers after bark damage. We used a long‐term fire experiment in the Kruger National Park to measure bark recovery with and without fire. At 24 months post‐damage, mean wound closure was 98, 92, and 72%, respectively, in annual and biennial burns and fire‐exclusion treatments. Fire exclusion resulted in higher rates of ant colonization of bark wounds, and such ant colonization resulted in significantly lower bark recovery. We also investigated how ten common savanna tree species respond to bark damage and tested for relationships between bark damage, bark recovery, and bark traits while accounting for phylogeny. We found phylogenetic signal in bark dry matter content, bark N and bark P, but not in bark thickness. Bark recovery and damage was highest in species which had thick moist inner bark and low wood densities (Anacardiaceae), intermediate in species which had moderate inner bark thickness and wood densities (Fabaceae) and lowest in species which had thin inner bark and high wood densities (Combretaceae). Elephants prefer species with thick, moist inner bark, traits that also appear to result in faster recovery rates

    Adaptation Reduces Variability of the Neuronal Population Code

    Full text link
    Sequences of events in noise-driven excitable systems with slow variables often show serial correlations among their intervals of events. Here, we employ a master equation for general non-renewal processes to calculate the interval and count statistics of superimposed processes governed by a slow adaptation variable. For an ensemble of spike-frequency adapting neurons this results in the regularization of the population activity and an enhanced post-synaptic signal decoding. We confirm our theoretical results in a population of cortical neurons.Comment: 4 pages, 2 figure

    A thorny issue: Woody plant defence and growth in an East African savanna

    Get PDF
    Recent work suggests that savanna woody plant species utilise two different strategies based on their defences against herbivory; a low nutrient/high chemical defence strategy and a nutrition paired with mostly architectural defences strategy. The concept that chemical and structural defences can augment each other and do not necessarily trade-off has emanated from this work. In this study, we examine woody plant defence strategies, how these respond to herbivore removal and how they affect plant growth in an East African savanna. At three paired long-term exclosure sites with high browser and mixed-feeder densities at Mpala Ranch, Kenya, we investigated: (a) whether defences employed by the dominant fine- and broad-leaved woody savanna species form defence strategies and if these align with previously proposed strategies, (b) how nine key plant defence traits respond to herbivore removal and (c) how effective the different defence strategies are at protecting against intense herbivory (by measuring plant growth with and without herbivores present). We identified three defence strategies. We found a group (a) with high N, short spines and high N-free secondary metabolites, a group (b) with high N, long spines and low N-free secondary metabolites and a group (c) with moderate N, no spines and low N-free secondary metabolites (most likely defended by unmeasured chemical defences). Structural defences (spine length, branching) were generally found to be induced by herbivory, leaf available N increased or did not respond, and N-free secondary metabolites decreased or did not respond to herbivory. Species with long spines combined with increased “caginess” (dense canopy architecture arising from complex arrangement of numerous woody and spiny axis categories) of branches, maintained the highest growth under intense browsing, compared to species with short spines and high N-free secondary metabolites and species with no spines and low N-free secondary metabolites. Synthesis. At our study site, structural traits (i.e. spines, increased caginess) were the most inducible and effective defences against intense mammalian herbivory. We propose that high levels of variability in the way that nutrient and defence traits combine may contribute to the coexistence of closely related species comprising savanna woody communities

    Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC Blends with TiO2 Nanofillers

    Full text link
    Numerous studies reported on irradiated epoxidized natural rubber/polyvinyl chloride (ENR/PVC) blends and the blends were found miscible at all compositional range thus it offers a broad of opportunity in modifying the blend characteristic. Addition of low loading titanium dioxide (TiO2) nanofillers in the ENR/PVC blends has shown a remarkable increment in tensile strength. Thus, this study was initiated to address the effect of TiO2 nanofillers on ENR/PVC blends dynamic mechanical and gel content properties and its morphology upon exposure to electron beam irradiation. ENR/PVC blends with addition of 0, 2 and 6 phr TiO2 nanofillers were first blended in a mixing chamber before being irradiated by an electron beam accelerator at different 0-200 kGy irradiation doses. The influence of TiO2 nanofillers on the irradiation crosslinking of ENR/PVC blends was study based on the dynamic mechanical analysis which was carried out in determining the glass transition temperature and the storage modulus behavior of ENR/PVC blends incorporated with TiO2 nanofillers. Formations of irradiation crosslinking in the blend were investigated by gel content measurement. While, the TiO2 nanofillers distribution were examined by Transmission Electron Microscope (TEM). Upon irradiation, the ENR/PVC/6 phr TiO2 formed the highest value of gel fraction. For dynamic mechanical analysis, it was found that electron beam radiation increased the Tg of all the compositions. The relationship between the crosslinking and the stiffness of the nanocomposites also can be found in this study. The enhancement in the storage modulus and Tg at higher amount of TiO2 in the blend could be correlated to the enhancement of the irradiation-induced crosslinking in the nanocomposites characteristic and also with the higher agglomerations of TiO2 evidence shown from the TEM micrograph examination. Lastly, the dimensions of TiO2 in the blends were found less than 100 nm in diameter which indicates incorporation of TiO2 nanofillers in ENR/PVC blends is potentially to provide the nanocomposites features. Doi: 10.12777/ijse.6.1.24-30 [How to cite this article: Ramlee, N.A., Ratnam, C.T., Alias, N.H., Rahman, M.F.A.. 2014. Dynamic Mechanical and Gel Content Properties of Irradiated ENR/PVC blends with TiO2 Nanofillers. International Journal of Science and Engineering, 6(1),24-30. Doi: 10.12777/ijse.6.1.24-30
    corecore