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A neural code based on sequences of spikes can consume a significant portion of the

brain’s energy budget. Thus, energy considerations would dictate that spiking activity

be kept as low as possible. However, a high spike-rate improves the coding and

representation of signals in spike trains, particularly in sensory systems. These are

competing demands, and selective pressure has presumably worked to optimize coding

by apportioning a minimum number of spikes so as to maximize coding fidelity. The

mechanisms by which a neuron generates spikes while maintaining a fidelity criterion

are not known. Here, we show that a signal-dependent neural threshold, similar to

a dynamic or adapting threshold, optimizes the trade-off between spike generation

(encoding) and fidelity (decoding). The threshold mimics a post-synaptic membrane (a

low-pass filter) and serves as an internal decoder. Further, it sets the average firing

rate (the energy constraint). The decoding process provides an internal copy of the

coding error to the spike-generator which emits a spike when the error equals or

exceeds a spike threshold. When optimized, the trade-off leads to a deterministic spike

firing-rule that generates optimally timed spikes so as to maximize fidelity. The optimal

coder is derived in closed-form in the limit of high spike-rates, when the signal can be

approximated as a piece-wise constant signal. The predicted spike-times are close to

those obtained experimentally in the primary electrosensory afferent neurons of weakly

electric fish (Apteronotus leptorhynchus) and pyramidal neurons from the somatosensory

cortex of the rat. We suggest that KCNQ/Kv7 channels (underlying the M-current) are

good candidates for the decoder. They are widely coupled to metabolic processes and

do not inactivate. We conclude that the neural threshold is optimized to generate an

energy-efficient and high-fidelity neural code.

Keywords: neural coding, coding fidelity, energy-efficient coding, dynamic threshold, spike-timing, source coding,

spike-threshold

Introduction

The coding and representation of signals using sequences of action potentials or spikes is an
energy intensive process (Attwell and Laughlin, 2001). It imposes a significant cost on information
transmission (Laughlin et al., 1998) and exerts selective pressure on the nervous system to generate
energy-efficient codes (Niven and Laughlin, 2008). However, lowering energy consumption (spike-
rate) can adversely affect sensory information processing, particularly for maintaining coding
fidelity. How then does a neuron balance energy-consumption and fidelity? One possibility is that
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for a given mean spike-rate the optimum trade-off is achieved by
timing the spikes to produce the best possible reconstruction of
the input signal. This would require a reconstruction mechanism
(a decoder) to reside within the neuron so that an internal error
signal can be generated by comparing the reconstruction with
the input signal. The error feedback to the spike generator (the
encoder) will allow the neuron to optimally time its spikes so
as to minimize the error. This is similar to certain forms of
digital coding where the decoder is built into the coder so that
an internal copy of the error is available (Jayant and Noll, 1984).

Traditionally, the neural coding literature has treated
the encoding (spike-generation) problem and the decoding
(reconstruction) problem as separate and distinct processes.
More importantly, from the perspective of this work, the
encoder and decoder mechanisms have never been considered
as embodied within the same neuron or as sharing coupled
biophysical mechanisms. Consequently reconstruction has
proceeded on the assumption that the encoding process is
separate and unknown (for e.g., see Eggermont et al., 1983;
de Ruyter van Steveninck and Bialek, 1988; Gabbiani, 1996).
This work reconciles encoding and decoding and situates both
processes squarely within the biophysical capabilities of the same
neuron. In essence, we claim that they are inter-locked processes,
indivisible, and essential for optimum coding.

We conjecture that neurons have an internal decoder that is
similar in form to a dynamic (adapting or moving) threshold
(for example, see Buller et al., 1953; Hagiwara, 1954; Geisler and
Goldberg, 1966; Brandman and Nelson, 2002; Chacron et al.,
2003; Jolivet et al., 2004; Brette and Gerstner, 2005; Kobayashi
et al., 2009; Fontaine et al., 2014). A dynamic threshold was
originally proposed to explain spike-timing and used exclusively
in forward (spike-generation) models. The dynamic threshold
is so-called because it describes the time course of the neuron’s
firing threshold immediately following a spike. The canonical
view that the spike threshold is constant (typically in the
range of about −55 to −45mV) fails to explain the increased
refractoriness of a neuron, and hence the increase in time
between spikes, in response to a constant stimulus (Hagiwara,
1954). In contrast, a dynamic (time-varying) threshold can
capture at least some of the spike-timing features of real neurons.

Of importance to this work are two observations: (1) the time-
dependent change in the threshold in response to the neuron’s
own spike can be viewed as an impulse response. The cumulative
change in the threshold over the history of prior spiking activity
is a summation of these individual impulse responses. That
is, it is a convolution. This point is central to this work and
provides a rationale for describing the threshold as a decoder.
(2) Historically (since Buller et al., 1953) the threshold impulse
response has been modeled as a decaying (or relaxing) potential,
that is, it has low-pass characteristics. Most often, this decaying
potential has been modeled as a single exponential of the
form h(t) = A exp(−t/τ) (for example, see Chacron et al.,
2003; Fontaine et al., 2014) or a mixture of exponentials of
the form

∑

i Ai exp(−t/τi) (for example, see Kobayashi et al.,
2009). Based on these observations we will show that the time-
varying threshold is a reconstruction filter, a decoder that can be
optimized for energy-efficient and high-fidelity coding.

The idea of interpreting the above function h(t) as a decoding
filter is motivated by post-synaptic filtering of spike trains. In
this well-known motif1 (for example, see Hille, 2001), a neuron
encodes an input s(t) in a spike train which is then filtered by
a passive post-synaptic membrane that reconstructs s(t). This
filter is usually modeled as a simple RC (resistance-capacitance)
element specified by A exp(−t/τ) where τ is the membrane time
constant (τ = RC) and A is a gain that governs the maximum
size of the post-synaptic current in response to a single spike. The
passive-membrane as a filter offers the simplest form of signal
reconstruction or decoding, and shares similarity in form with
the dynamic threshold [h(t), see above]. Thus, we conjecture that
the dynamic threshold h(t) has been selected to mimic passive
membrane dynamics. The cell membrane (lipid bilayer with
leakage channels) is an ancient structure going back to the earliest
single-celled organisms, and its low-pass filter characteristics
are possibly just as old. Thus, an in-built decoding mechanism
based on a blind evolutionary convergence to low-pass dynamics
would confer selective advantage on the organism. Stated in other
words, any internal information on the quality of coding is likely
to exert favorable selective pressure. We argue that the neuron
threshold provides exactly this information.

The threshold for spiking is an intrinsic component of any
spiking neuron. It determines successive spike times and its
value (inmV) is usually inferred from the measured action
potential. How this value is set and whether the precise times
of successive spikes are governed by an over-arching principle
has received less attention, except insofar as to explain observed
data (see Brette, 2015). Here, we provide an interpretation of
the neuron threshold. We propose that the hypothetical post-
synaptic membrane (decoder) is mirrored internally as a time-
varying threshold h(t), and further, we show that it serves
two purposes: (1) it regulates the long-term excitability of the
neuron (the energy constraint), and (2) it provides an internal
reconstruction r(t) by filtering the neuron’s own spike train, and
makes available the error signal s(t) − r(t) (coding fidelity). The
neuron minimizes the error by firing a spike whenever the error
exceeds a spiking threshold γ. Thus, our interpretation of the
neuron threshold is that it is a bound on coding error.

We derive the optimal value of γ and show that it is signal-
dependent, i.e., γ = γ(s, t), but reaches an asymptotic value in
the limit of high signal amplitudes. This optimal firing threshold
is derived for a piece-wise constant input signal, i.e., constant
within an interspike interval, an approximation which holds in
the limit of high spike-firing rates. Throughout this work we refer
to the optimized process (the functions h(t) and γ(s, t)) as the
optimal neural coder or simply as optimal coder.

While it is recognized that spike-times can be accurately
predicted by neuron models with a dynamic threshold (see
references above), our interest here is to show that optimum
timing can be achieved with the proposed optimal coder.

1The description of amembrane element as a passive RC element has a long history
going back at least to Lapicque (1907). It was elaborated on experimentally and
theoretically by a number of investigators in the first half of the twentieth century,
including Kenneth Cole, John Eccles, Alan Hodgkin, Bernard Katz, Wilfrid Rall,
Nicolas Rashevsky, among others. In its most general form it is a partial differential
equation.

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 61

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Jones et al. An optimum neural coder

Spike-timing is simply an outcome that is testable. Thus, after
establishing the optimized function γ(s, t), we test the coder
with in vivo extracellular spike-timing data taken from primary
electrosensory afferents of weakly electric fish and in vitro
intracellular data taken from neocortical pyramidal neurons
of the rat. There is a close match between predicted and
experimental spike-times for these widely differing neurons.
This provides evidence to support the hypothesis and suggests
future lines of work. Finally, a time-varying threshold is a
fairly old idea going back to Buller et al. (1953) and Hagiwara
(1954) where it was first introduced mathematically to explain
negative interspike interval correlations. More recently it has
been recognized that the threshold can be signal-dependent (see
Platkiewicz and Brette, 2010; Fontaine et al., 2014). What we
provide here is a new perspective on the relevance of the neuron
threshold to encoding and decoding. Our work suggests that a
neuron is a highly precise coder, neither noisy nor unreliable
as believed, but embodying a sophisticated coding system that
can husband the neuron’s energy resources judiciously without
sacrificing coding fidelity. In this process, the neuron threshold
plays a key role in regulating fidelity.

Materials and Methods

Experimental work on weakly electric fish was carried out at
the University of Illinois at Urbana-Champaign, USA, with
approval from the university IACUC. The pyramidal cell data
set used here is from the rat, and was collected by Thomas
Berger and Richard Naud in the laboratory of Henry Markram at
École Polytechnique Federale de Lausanne (EPFL), Switzerland.
The EPFL data is available in the public domain through the
International Neuroinformatics Coordinating Facility (INCF)
2009 Spike Time Prediction Challenge2.

Electrophysiology in Weakly Electric Fish
Surgical and electrophysiological recording procedures in the
weakly electric fish follow those reported in Nelson et al. (1997).
The fish used in the study are of unknown sex. Briefly, adult
brown ghost knife fish (Apteronotus leptorhynchus, 12–17 cm
long), a species of gymnotiform fish, were lightly anesthetized
by immersion in 100 ppm tricaine methane-sulfonate (MS-
222, Sigma) for 2min, and then immobilized with a 3µl
intramuscular injection of 10% gallamine triethiodide (Flaxedil,
Sigma). The fish was restrained in a holding tank containing
water and actively ventilated via a mouth tube. A surgical incision
was made on the skin just posterior to the operculum to expose
the posterior branch of the anterior lateral line nerve (pALLN).
The nerve fiber from a P-type (probability coding) primary
electrosensory afferent was isolated and its action potentials
were recorded using glass micropipettes filled with 3M KCl
solution. Spike times and their associated spike waveforms were
sampled and stored for offline analysis (at 60µs resolution).
The ongoing electric organ discharge (EOD) generated by the
fish was monitored with a pair of carbon electrodes placed

2www.incf.org/community/competitions/archive/spike-time-prediction/2009/
challenge-a

near the head and tail of the fish. Stimulation was provided
by modulating the EOD with a single-cycle raised cosine of
100ms duration and delivered across the whole body using
two carbon rods placed on opposite sides of the fish along the
anterior-posterior axis. The stimulus amplitude was calibrated
with respect to the transdermal potential, measured between a
recording electrode close to the skin on the lateral trunk of
the fish and a reference electrode inserted under the skin on
the dorsal surface. A 1mV root mean-square (RMS) voltage
increase was defined as the reference (0 dBV). Stimulus intensities
ranged from 0 dBV to−60 dBV attenuation in 5 dB steps with
20 stimulus repetitions at each amplitude. Stimulus waveforms
time-locked to the neural data were stored for offline analysis.

Rat Pyramidal Neurons (INCF Data-set)
The 2009 INCF Spike Time Prediction Competition provides
data-sets3 with a challenge to reproduce the spike times using
a computational model (for results of the competition see
Gerstner and Naud, 2009). Stimulus data are also provided
although the competition did not require that the stimuli be
reconstructed from the given spike activity. The data set from
Challenge A (one of four challenges) is considered here, and is
available in the public-domain along with a complete description
of the methods from the organizers (http://www.incf.org/
community/competitions/archive/spike-time-prediction/2009/
challenge-a). Briefly, the data were obtained from in vitro
current-clamp recordings in the soma of L5 pyramidal cells in
the primary somatosensory cortex of the rat. The sex of the rat
was not made known. The voltage data was filtered (2.4 kHz
bandwidth Bessel filter) and sampled at 100µs resolution.
Recordings of somatic membrane potential were obtained in
response to 60 s of injected current. The stimulus was repeated
for a total of 13 trials. The stimulus and the first 39 s of the
response from each trial was made public, whereas the remaining
21 s of the response remained private and was reserved for
testing by the organizers of the competition. The stimulus
consisted of the following sequence: (1) step current input with
a duration of 2 s, repeated four times with an inter-stimulus
duration of 2 s. The total duration was 17.5 s, (2) injection of
2 s of white noise, (3) six simulated spike trains generated by
an inhomogeneous Poisson process convolved with exponential
decays of different time constants and summed together for a
duration of 42.5 s. The intensities were chosen randomly over
300–500ms blocks to elicit firing rates between 5 and 10Hz.
From the voltage recordings, spike-times were found using a
threshold of 0mV. This study used the first 39 s of the publicly
available current-clamp stimulus and the spike-times extracted
from the 13 trials. The challenge required only the spike times to
be predicted using a generative model of neural coding, but did
not require the stimulus to be reconstructed.

Optimum Encoder Formulation
We consider here a neural coder that embodies a spike generator
(encoder) and a reconstruction filter (decoder) h(t) within
the same neuron (Figure 1A). The encoder portion of the

3http://www.incf.org/community/competitions/archive/spike-time-prediction/
2009
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FIGURE 1 | (A) The optimum neural coder consists of a spike generator

(encoder), reconstruction filter (decoder), and a firing threshold (γ). Input to the

neuron is s(t) > 0 and output is the spike train
∑

k δ(t− tk ). The decoder

reconstructs the signal r(t) from the spike train and provides an error feedback

(s− r) to the spike generator. When the error reaches a level-dependent firing

threshold γ = γ(s, t) the neuron outputs a spike. An optimization procedure

(firing-rule), constrained by fixed energy (a fixed spike-rate R), determines the

threshold for firing (see Mathematics and Equations). (B) Signal (black), its

reconstruction (red), and threshold function for firing (dotted line). The

reconstruction filter mimics a post-synaptic membrane, here a first-order

low-pass filter (Ae−t/τ ), and is a form of adapting or moving threshold. (C) The

error signal s− r can be interpreted as another form of adapting threshold that

causes the neuron to fire when the error reaches γ from below. The simplest

firing rule is obtained in the asymptotic case s(t)≫ A. In this case γ = A/2 and

the optimal firing time occurs whenever s− r = A/2 (upper dashed line). The

general form of the firing threshold is signal level-dependent (see Mathematics

and Equations).

neuron takes an input signal s(t) and generates a spike train
representation

∑

k δ (t − tk) of the signal, where δ (t) is the Dirac
delta and tk are the spike-times indexed by k. The decoder portion
of the neuron, with a reconstruction filter h(t), takes the spike
train as input and generates a reconstruction r(t) of s(t) given
by r(t) =

∑

k

∫ t
0 δ(τ − tk)h(t − τ) dτ. From Figure 1B it can be

seen that the reconstruction has a form that is similar to a time-
varying threshold used extensively in the literature for modeling
threshold dynamics (see Introduction). The reconstruction error
(coding fidelity) is s(t)−r(t). What is novel in the proposed coder
is that this instantaneous error signal is available internally.

Themotivation for the proposed coding/decodingmechanism
comes from the classical pre- and post-synaptic pair of neurons
(Abbott and Regehr, 2004; see also Hille, 2001). In this motif, a
neuron encodes an input s(t) in a spike train which is then filtered
by a post-synaptic membrane (decoder) to reconstruct s(t). The
post-synaptic membrane is usually considered to be a simple
first-order low-pass filter (an RC element) with exponential decay
given by A exp(−t/τ), where τ = RC is the time-constant and A
is the gain. In the proposed neural coder, the hypothetical post-
synaptic membrane is mirrored in the neuron’s internal decoder

(the filter h(t)) as a time-varying threshold. We presume that this
mechanism may have resulted from selective pressure so as to
minimize coding error (see Introduction and Discussion for a
detailed explanation).

Figure 1B depicts the optimal coding process for an arbitrary
input s(t) (black trace) and reconstruction r(t) (red trace). The
two processes, encoding and decoding, are coupled with the
encoder emitting a spike only when the error s(t) − r(t) reaches
a threshold γ (γ > 0). When a spike is initiated the neuron’s
threshold is instantly raised, and thereafter relaxes without
resetting. The neuron will fire a spike at time t∗ (Figure 1B) when
the error satisfies

s(t∗)− r(t∗) = γ. (1)

The firing threshold is approached from above. In general the
firing threshold is a signal-dependent function γ = γ(s, t). Thus,
the firing threshold can be interpreted as the imposition of a
bound on the permissible reconstruction error. It establishes the
trade-off between energy consumption of the neuron and the
coding fidelity. We conjecture that it is a biophysical analog of
the error signal s(t) − r(t) (Figures 1B,C) that drives the spike
generator in real neurons.

We propose that the encoding parameters should be chosen to
minimize the squared reconstruction error T−1 ∫T0 (s(t)− r(t))2dt
subject to an energy constraint over the time window T. A simple
first approximation of energy use (Levy and Baxter, 1996) is a
linear function of the average spike-rate, E = b + kR where R
is the average spike-rate in the window T, k is the cost per spike
and b is a baseline energy consumption level. For a neuron with
a given energy constraint, the constrained optimization problem
with unknown γ and unknown filter parameters (A, τ), is

Min
(A,τ), γ= γ(s,t)

{

∫ T

0
(s(t)− r(t))2 dt

}

, such that E = b+ kR.

(2)
An equivalent way of expressing Equation (2) is to state it in a
Lagrangian form by introducing a Lagrange multiplier λ > 0
which weighs the constraint against the encoding error (Boyd and
Vandenberghe, 2004). The Lagrangian form of the optimization
problem is then (Boyd and Vandenberghe, 2004)

Min
(A,τ), γ= γ(s,t)

{

∫ T

0
(s(t)− r(t))2dt + λ(b+ kR− E)

}

(3)

The formulations, Equations (2) and (3), are equivalent in the
sense that for some value of the constraint E there exists some
multiplier λ such that the solutions to Equations (2) and (3) are
the same. The advantage of stating the optimization problem in
the Lagrangian form is that it makes explicit that the termsλb and
λE are constants and thus they do not affect the optimum value.
The energy constraint is therefore equivalent to constraining
the spike-rate R. The spike-rate R is a “design” parameter that
is fixed prior to the optimization. Without the constraint, the
optimization would drive the rate to the maximum possible
firing rate of the neuron so as to drive the error to zero. When
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matching experimental spike trains, the rate R is computed from
the observed long-term average spike output.

The outcome of the optimization process is the optimum
firing threshold γ = γ(s, t) and the optimal reconstruction filter
parameters (A, τ). The firing threshold provides the necessary
trade-off between energy and coding fidelity (Figures 1B,C).
Equations (2) or (3) specifies a functional relationship (the
optimal trade-off) between spike-rate R and encoding error E(R)
for the optimal coding neuron. We provide examples of E(R)
later in the Results. The spike-rate constraint R determines the
exact point along this curve where a given neuron will be located
and hence, the coding fidelity. From computational or modeling
perspective, when designing an optimal encoding neuron, a
suitable (A, τ) pair is picked so that the rate constraint R is
satisfied (as detailed further in Optimum Parameters for a First
Order Reconstruction Filter). Thereafter γ(s, t) is determined,
and an optimal spike-train can be generated. However, when
working with experimental data, we are confronted with the
“reverse” problem.We are given a set of spike-times, and wemust
determine whether these spike-times were generated according to
the optimal encoding principle. We have to infer the parameters
(A, τ) and γ(s, t) so as to predict, i.e., match, the known spike-
times. This is shown in the following section.

Optimization Procedure for Comparison against

Experimental Data
Our goal here is to verify the optimal coder predictions using
experimental data. When working with experimental spike data,
the only known quantities are the spike-times and the average
spike-rate R, and we have to determine (A, τ), and γ(s, t) so
that the spike-times and the rate R are matched. This is a multi-
step procedure involving two separate optimizations [determine
(A, τ) and then determine γ(s, t)] that jointly satisfy Equation
(2) [or equivalently Equation (3)]. Both optimizations satisfy the
constraint R, but the optimization of (A, τ) additionally provides
the best match to the spike-times.

For illustration, consider the case where spike-trains are
generated from M repetitions of a stimulus. Consider any one
of the M spike-trains to be a reference trial. The reference trial
is used to optimize the parameters. The optimal encoder is then
validated by predicting the spike-times in the remaining (M − 1)
trials.

1. Match spike-rate R by determining A and τ: For the given
spike-train with average spike-rate R, and a reconstruction
filter h(t) = A exp(−t/τ), we can determine either A or
τ, but not both (see Optimum Parameters for a First Order
Reconstruction Filter). We pick a τ (from a set of τ s) and
fix A so that the spike-rate constraint is met. Thus, (A, τ) are
known.

2. Minimize coding error: Given a spike-rate R and the filter
parameters (A, τ) from Step 1, we minimize the mean squared
reconstruction error

Min
γ= γ(s,t)

{

∫ T

0
(s(t)− r(t))2dt

}

, given R, and (A,τ). (4)

This yields the optimum firing policy or firing threshold
γ = γ(s, t). The solution to the optimization problem is
available in closed-form and is described in Optimum Value
of γ for High Spike-rates with a Complete Derivation in
Mathematics and Equations.

3. Match spike-times: A spike train is generated using the
parameters determined in Steps 1 and 2. The spike-times are
compared with spike-times from the reference trial, and a
spike-time coincidence metric is determined (see Coincidence
Measure for Similarity of Spike Trains).

Steps 1–3 are repeated over a range of τ values thereby
generating a set of coincidence measures. The τ value with the
highest coincidence is selected. Thus, the optimal (A, τ) is now
known, and γ(s, t) can be determined. This set of parameters
is considered to be the optimal parameter set, and is used to
generate (M− 1) spike-trains. The average coincidence measure,
averaged over all (M−1) trials, is a measure of performance of the
optimal coder. Section Parameter Selection provides additional
details on the procedure for the p-type afferent and cortical
neuron data.

Optimum Parameters for a First order Reconstruction

Filter
The simplest model of a post-synaptic membrane is a RC element
(first-order low-pass filter) with impulse response given by

h(t) = A exp(−t/τ), t ≥ 0. (5)

The parameters τ and A define this reconstruction filter. The
average output of the filter in response to a single spike is
obtained by integrating Equation (5), and yields Aτ/spike. We
note that the average filter output should match the average level
of the signal over a long time window, where fluctuations in the
input signal are averaged out. Given an average spike-rate R, the
average output level is AτR. If the mean input signal level is S̄,
then the filter parameters should be chosen to satisfy

Aτ =
S̄

R
. (6)

While the right-hand side of Equation (6) is known from
experimental data, the equation does not uniquely specify A
and τ, and so this gives us one degree-of-freedom. This single
degree-of-freedom is utilized to obtain the best match between
the predicted and experimental spike-times (via the coincidence
measure, described in Coincidence Measure for Similarity of
Spike Trains). Thus, the optimal parameters (A, τ) are defined
as those that satisfy Equation (6) and which provide the best
coincidence with the experimental spike-times. We determine
the optimal (A, τ) pair using a brute-force search over a range
of τ values. For each value of τ, we obtain A from Equation
(6). The (A, τ) parameters along with the spike-rate R are then
used to generate a spike-train as detailed in Steps 2, 3, of
Optimization Procedure for Comparison against Experimental
Data.
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Optimum Value of γ for High Spike-rates
For a positive signal s(t) > 0, given R, and (A, τ), Equation
(4) will determine γ(s, t). In general this optimization problem
is difficult to solve. However, in the limit of high spike-rates,
it is possible to derive an expression for the optimal firing
threshold. As the time between spikes decreases, the signal can
be considered to be approximately constant between two spikes.
As the spike-rate increases this piece-wise signal becomes an
increasingly better approximation of the input signal. Given this
assumption, we obtain a closed-form deterministic and causal
firing-rule γ(s, t) that is dependent only on the dimensionless
amplitude ratio ε = s(t)/A (see Section Mathematics and
Equations for the development of the result),

γ(s, t) = A

{

(1+ 2ε)−
√
1+ 4ε2

2

}

, where ε = s(t)/A. (7)

A spike is fired at the instant s(t) − r(t) = γ(s, t) (see
Figures 1B,C). An asymptotic form of this firing rule when ε ≫
1 (s(t)≫ A, large signal) is particularly simple. The threshold for
firing is constant and given by,

γ = A/2, when s(t)≫ A. (8)

This result (Figure 1C, upper dashed line) holds for a wide range
of signal amplitudes (see Mathematics and Equations). The more
general time-varying firing threshold given by Equation (7) is
shown as a dotted line in Figure 1C. This value of gamma defines
a firing-rule which, in general, depends on time and the input
signal level. The spike-generator models that are closest to the
work described here are the dynamic-thresholdmodels with non-
resetting inputs (Brandman and Nelson, 2002; Kobayashi et al.,
2009). In those models they assume that the firing-rule is γ = 0,
so a spike is fired when s(t) − r(t) = 0. This rule will result
in higher reconstruction errors compared to the optimal rule
specified in Equations (7) or (8). Throughout this work, the
optimal, signal-dependent form of γ given by Equation (7) is used
to generate spike-trains.

Leaky Integrate-and-fire (LIF) Neuron with
Dynamic Threshold (LIF-DT)
The classical leaky integrate-and-fire or LIF neuron (Lapicque,
1907; Stein, 1967; for a brief history see Brunel and van Rossum,
2007) is a standard and widely used neuron model. In the
original form it has a fixed threshold. Although it is well-
known that the LIF model does not capture many of the spiking
phenomenon observed in real neurons, it is commonly used,
simple to implement, and is analytically tractable. It is defined
by a differential equation, representing the membrane potential
V(t), given by

τm
dV(t)

dt
= −V(t)+ RI(t), (9)

where R represents the membrane resistance, τ the model time-
constant, and I(t) the input current. When the membrane
potential V(t) exceeds a threshold θ, a spike is fired and the

membrane potential is reset to zero. To encode the EOD
waveform of the weakly electric fish, the waveform is first rectified
before running the LIF model.

The classical LIF model can be extended in many ways,
including incorporating a dynamic or adaptive threshold θ(t) (for
example, see Chacron et al., 2001; Liu andWang, 2001). Defining
θ(t) = h(t) ∗

∑

(δ(t − tk)) with h(t) = A exp(−t/τ) gives
an exponentially decaying threshold. This model has two non-
linearities: the spike-firing threshold and the resetting integrator
(typically a hard reset to 0). Although similar to the proposed
neural encoder, the dual non-linearities can lead to different
behavior. We will compare the predictions of the optimal neural
encoding model, the classical LIF model, and the LIF with
Dynamic Threshold (LIF-DT) model.

Coincidence Measure for Similarity of Spike
Trains
The goodness of fit between the spike times recorded
experimentally and the spike times generated by the optimal
encoder was measured by the coincidence factor (Kistler et al.,
1997). Experimental spikes and predicted model spikes are
considered to be coincident if they occur within 1 seconds of
each other. The coincidence factor is defined as,

Ŵ =
Ncoin − E[Ncoin]

(Ndata + Nmodel)

2

(1− 2ν1)
, (10)

where Ncoin is the number of coincident spikes, E[Ncoin] is the
expected number of coincidences for a homogeneous Poisson
process with the same spike rate as themodel,Ndata is the number
of experimental spikes, Nmodel is the number of model spikes,
and ν is the spike rate of the model. This factor will reach 1 if
every spike is coincident. The expected value of the coincidence
factor is 0 if the model spike train is given by a Poisson process
with the same rate as the experimental data. For this work, the
coincidence window for the weakly-electric fish data was taken to
be half an EOD period, as P-type afferents fire at most one spike
per EOD period. For the INCF competition challenge data, the
window was 4ms.

Reconstruction Error
Reconstruction error was calculated from the RMS value of the
error normalized by the RMS value of the stimulus, and reported
as dBV RMS (re: stimulus)

10 log10

(

∫ T
0 (s(t)− r(t))2 dt

)1/2

(

∫ T
0 s2(t) dt

)1/2
. (11)

Normalizing the error to the stimulus allows reconstruction error
to be compared across stimulus levels.

Parameter Selection
For the P-type spike trains, the stimulus (modulated EOD
waveform) was recorded at the skin of the fish. It was filtered
with a bandpass filter centered at the EOD frequency with a
bandwidth of approximately 50Hz. This preserved the EOD
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waveform and amplitude modulations while eliminating artifacts
in the recorded stimulus. Baseline stimulus levels and firing rates,
for use on the right-hand-side of Equation (6), were obtained
from the pre-stimulus portion of the data. Due to the variability
in estimating the baseline level and rate, (A, τ) pairs which
resulted in simulated spike-trains within 15 spikes per second
of the experimental data were allowed. Stimuli were measured
at the skin of the fish with respect to a subdermal reference
electrode placed on the dorsal side of the fish. These are most
likely not the true potential difference across the receptor. They
were rescaled with respect to the baseline EOD to correct for
stimulus discrepancies. This affects the absolute value of the
stimulus peak amplitude but preserves the differences between
the stimuli (in dBV). For the optimal coder the scale factor was
4.95 (stimulus level: −20 dBV), 6.28 (stimulus level: −10 dBV)
and 4.55 (stimulus level: 0 dBV).Where applicable, the parameter
values used to generate Figures 2–7 were τ = 34.5ms and A =
2.05 × 10−4 V (−20 dBV), τ = 22ms and A = 3.42 × 10−4

V (−10 dBV), and τ = 24.5ms and A = 3.22 × 10−4 V
(0 dBV). For each stimulus level, the parameters were chosen
to maximize coincidence with the P-type spike-train from one
randomly selected trial (out of twenty). The same parameters
were used to generate spike-times for the remaining 19 trials.
The parameters are similar across stimulus strength, with the
small differences resulting from the small changes in the average
baseline firing rate as measured in the pre- and post-stimulus
periods.

The LIF model was tuned using the threshold parameter and
the time-constant of the input filter. For simplicity, the input
filter resistance (R) in Equation (9) was fixed at R = 1. The
threshold level could then be adjusted to achieve the desired
firing rate. Because of the variability in estimating the baseline
level and spike-rate, parameter values which resulted in simulated
spike-rates within 15 spikes per second of the experimental rate
were allowed. The half-wave rectified EOD waveform was used
as input to the neuron with EOD scale factor of 5.1 (−20 dBV),
4.9 (−10 dBV), and 4.2 (0 dBV). Where applicable, the parameter
values used to generate LIF spike-trains and PSTHs shown in
Figures 2–4 were τm = 50ms and θ = 3.28×10−5 V (−20 dBV)
τm = 114ms and θ = 1.44×10−5 V (−10 dBV), and τm = 98ms
and θ = 1.62 × 10−5 V (0 dBV). As with the optimal coder,
the LIF parameters were selected to maximize coincidence with
the P-type spike-train from one randomly selected trial (out of
twenty). The same parameters were used to generate spike times
for the remaining 19 trials. The LIF and LIF-DT models do not
have an in-built decoder. To generate decoded waveforms, it is
necessary to choose a reconstruction filter for both these models.

To compare the LIF model with the optimal encoder, a first-
order reconstruction filter was used to reconstruct the signal
from the LIF spike-trains. The filter parameters were chosen
to minimize the average reconstruction error between the EOD
envelope and the LIF spike-trains. The optimum reconstruction
filter parameters were determined through simulations, and
the reconstructions depicted in Figures 5–7 used the following
parameters: τ = 27ms and A = 2.58 × 10−4 V (−20 dBV),
τ = 11.5ms and A = 6.01× 10−4 V (−10 dBV), and τ = 6.5ms
and A = 1.1 × 10−3 V (0 dBV). P-type afferents can fire a

FIGURE 2 | Stimulus coding in an example P-type electroreceptor

afferent, matched optimal neural encoder, leaky

integrate-and-fire-neuron (LIF), and LIF with dynamic-threshold

(LIF-DT) at two different stimulus intensities. (A) −10dBV, and (B) 0 dbV

(drawn to scale). The stimulus as recorded at the skin of the fish (top, black

trace) transiently modulates the ongoing electric organ discharge (EOD,

removed for clarity) for 100ms (black bar). The decoder output (optimal

reconstruction) is overlaid (red trace). Spike trains are shown below the

stimulus, P-type (black), optimum encoder (red), LIF (blue), LIF-DT (magenta).

Reconstruction from LIF and LIF-DT neurons are not shown. Onset and offset

periods (insets a-d) are magnified (lower panels) and show details of

experimental vs. predicted spike-timing (coder only). The EOD (carrier)

waveform is also shown with stimulus and reconstruction. Stimulus in (B)

causes saturation in firing rate during the rise (arrow, inset c) and peak of the

stimulus, and suppression of firing during the latter part of the decay (arrow,

inset d).

maximum of one spike per EOD cycle and so the optimal encoder
and the LIF neuron were limited to firing at most once per EOD
cycle.

To tune the LIF-DT model, a similar procedure to the LIF
model was used. The input filter resistance was again assumed to
be 1. The membrane time constant τm, adaptation time constant
τ, and adaptation height A were adjusted to achieve the baseline
firing rate and maximize the coincidence with the P-type spike-
train from a random trial. Due to the variability in estimating
the baseline spike rate, parameter values resulting in a spike-
rate within 15 spikes per second of the experimental rate were
allowed. The same EOD scale factors were used as for the
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FIGURE 3 | Peri-stimulus time histograms (PSTHs) obtained in

response to stimuli shown in Figure 2. Columns from 1 to 4 are example

P-type responses, spike-trains predicted by the optimal neural encoder, a LIF

model, and a LIF-DT model, respectively. Rows show responses to stimuli of

amplitudes 0 dBV (A), −10dBV (B), and −20dBV (C). Single trials of the

PSTHs shown in A and B are reported in Figures 2A,B, respectively. Each

PSTH was determined from 20 trials (4ms bins). Black traces are the

smoothed histograms (16ms window). The PSTH of the spikes simulated by

the optimal encoder closely approximate the time-varying spike-rate seen in

the P-type responses.

FIGURE 4 | Change in spike rate (ordinate) as a function of stimulus

intensity (abscissa) for the P-type afferent (filled black circles) and

matched optimal encoder (red), LIF model (blue), and LIF-DT model

(magenta). The change in spike rate is calculated as the difference between

the average spike rate elicited by the stimulus and the baseline, averaged over

20 trials. The increases in spike counts are the same in all three cases, thus

suggesting a rate code. However, the P-type afferent and the LIF neuron do

not have similar temporal spiking patterns (see Figures 2, 3).

proposed neural encoding model. The half-wave rectified EOD
waveform was used as input. The optimal parameters were A =
7 × 10−5 V, τ = 35 ms, τm = 2ms (−20 dBV), A = 6.4 × 10−5

V, τ = 44ms, τm = 1ms (−10 dBV), and A = 6.4× 10−5 V, τ =
44ms, and τm = 1ms (0 dBV). Like the LIF model, the LIF-DT

model has no notion of a decoded waveform. We therefore had
to determine a low-pass reconstruction filter which minimized
the average reconstruction error for the LIF-DT spike-trains. The
reconstruction parameters wereA = 2.1×10−5 V and τ = 36ms
(−20 dBV), A = 2.6 × 10−4 V and τ = 28.5ms (−10 dBV), and
A = 3.9 × 10−4 V and τ = 20ms (0 dBV). The LIF-DT model
was constrained to fire at most one spike per EOD cycle.

To fit the spike-times from the INCF competition
(Figures 8–10), the current waveform was first filtered with
a first-order low-pass filter with a gain of 106 and a time-constant
of τm. The filter gain served to convert the input signal from
hundreds of pA into themV range. The three methods were used
to predict the precise spike-times for one trial with parameters
being adjusted to match spike times with highest coincidence
factor Ŵ, Equation (10). For the neural source encoder, these
parameters were: A = 1.5mV, τ = 224ms, and τm = 20.3.
For the LIF model, the parameters were R = 1, τm = 225ms
and θ = 1.24mV. The parameters minimizing reconstruction
error for the LIF model were A = 2.2mV and τ = 150ms. For
the LIF-DT model, τm = 13ms, τ = 165ms, and A = 2.7mV.
The parameters minimizing reconstruction error for the LIF-DT
model were A = 1.6mV and τ = 187ms. For all three methods,
parameter values which resulted in simulated spike-rates
within 1.5 spikes per second of the experimental rate were
allowed.
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FIGURE 5 | (A) Reconstruction error as a function of filter time-constant given

an energy constraint (fixed spike rate). Experimental data are from a P-type

afferent. For a given baseline spike rate (237 spikes/s, P-type, Figure 3) the

reconstruction error is a function of the filter time-constant (red: encoder, blue:

LIF, magenta: LIF-DT). The curve also depicts sensitivity of reconstruction error

to fluctuations in the filter time-constant. For the reconstructions (shown later)

we picked filter time-constants in the following way: The encoder has a built-in

decoder which by optimization has a time-constant that gives the lowest

reconstruction error (filled red circle, 22ms). On the other hand, for the LIF

neuron there is no built-in decoder but we picked a hypothetical decoder that

would provide the lowest error (filed blue circle, 11.5ms). Similarly for the

P-type unit and LIF-DT model we estimated the best time-constant assuming

a hypothetical decoder (black and magenta circles, 26.8 and 28.5ms). See

text for more details. (B) Reconstruction error as a function of spike-rate for the

best filter time-constant (as shown in A). Symbols and lines are as in (A). The

lines represent simulations over the entire range of spike-rates shown in the

abscissa. The filled circles mark the reconstruction errors at the experimentally

determined P-type baseline spike rate (237 spikes/s), with a tolerance of ±15

spikes/s due to simulation constraints. Broadly, the error should reduce with

increasing spike rate due to improved signal representation. This is analogous

to the rate distortion function (Cover and Thomas, 2006). As predicted the

optimal encoder yields the lowest error for a given spike rate.

Reconstructions of the experimental spike-trains were created
by finding the parameters A and τ which minimized the
reconstruction error when the spike-trains were convolved with
a filter h(t) = A exp(−t/τ). For the weakly electric fish data-
set, the optimal parameters were A = 0.17mV and τ = 45ms
(−20 dBV), A = 0.29mV and τ = 26.8ms (−10 dBV), and
A = 0.4mV and τ = 20ms (0 dBV). For the INCF data-set,
the parameters which minimized reconstruction error for the
experimental spike-train were A = 2mV and τ = 157mV.

Results

The optimal coder can be readily validated because its outcomes
are a set of spike-times predicted by Equation (1). Further,
for a given spike-rate (energy constraint), the internal decoder
provides a reconstruction which has a higher fidelity (lower

FIGURE 6 | Stimulus reconstructions from: (1) optimal coder, (2) LIF,

and (3) LIF-DT spike trains using a low-pass filter at three stimulus

levels. (A) 0dBV, (B) −10dBV, (C) −20dBV. Experimental data are from a

P-type afferent. Each panel depicts the stimulus (black trace), and

reconstructed stimulus (encoder: red, LIF: blue, LIF-DT: magenta) from one of

20 trials (spike train is shown below the stimulus). In Row (C), insets provide

magnified view of the stimulus and reconstruction. Reconstruction error in dBV

(re: stimulus) is reported in each panel, with more negative values indicating

smaller error. Reconstruction filters had time-constants that yielded the lowest

reconstruction error (see Figure 5). The optimal decoder reconstructions track

the stimulus onset and offset without noticeable delays, and match the

stimulus amplitude. However, the LIF reconstructions suffer phase and

amplitude distortion. The quality of LIF-DT reconstructions lie between those

of the optimal decoder and the LIF neuron, with noticeable distortion at the

highest signal amplitudes.

error) than other reconstructions. These predictions will be
compared to spike-timing data obtained from peripheral
sensory neurons in the electrosensory system of weakly electric
fish (in vivo) and from cortical pyramidal neurons in the
somatosensory system of the rat (in vitro). They will also be
compared to spike trains predicted by a classical leaky-integrate
and fire (LIF) neuron and a LIF neuron with a dynamic threshold
(LIF-DT).

Coding in Primary Electrosensory Neurons of the
Weakly Electric Fish
Broadly, the key finding is that for a given constraint on the
spike rate, the spikes are timed so that the decoded signal has
minimum reconstruction error. The spike generator has access to
the error signal, which allows spikes to be generated to minimize
reconstruction error (Figure 1A).

Encoding and Spike-timing
Figures 2A,B show the stimulus (black trace, A: −10 dBV and
B: 0 dBV intensities) and spike response (black spikes) of a
primary P-type electrosensory afferent from the weakly electric
fish Apteronotus, the optimum reconstruction (red trace) and
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FIGURE 7 | Stimulus reconstructions from: (1) optimal coder (red) (2)

LIF (blue) spike trains (bottom traces) using a low-pass filter with three

different time-constants. (A) 11ms (optimum for LIF), (B) 22ms (optimum

for coder), (C) 45ms (arbitrary value). Experimental data are from a P-type

afferent. Stimulus is shown as black trace. Vertical line marks stimulus onset

time. The optimum coder (B1) preserves onset time and stimulus features

without significant distortions. At small time-constants (A1) the coder is

sub-optimal and exhibits a faster rise-time and decay with rebound (re:

stimulus) resembling the smoothed PSTH (see Figures 3, B2) but still tracks

the onset accurately. At long time constants the coder exhibits phase delays

and amplitude distortion. The LIF reconstructions (right column) demonstrate

shifts in phase, amplitude, and smearing (lengthening) of the reconstruction

(re: stimulus) even when the time constant is optimum (A2). These figures

suggest that the time-pattern of spikes are important for preserving temporal

features of the reconstructed stimulus.

spike response (red spikes) of the neural coder, the response of
a leaky-integrate-and fire (LIF) neuron (blue spikes), and the
response of an LIF-DT neuron (magenta spikes). The energy
constraint of the optimal coder was the baseline spike rate of the
afferent (237 spikes/s), from which the filter parameters A and
τ were determined using Equation (6). For each of 20 trials, the
initial condition of the optimal decoder was set so that the time to
first-spike of the encoder was the same as the time to first-spike
of the P-type unit.

Starting with this initial condition, the decoder attempts
to track the stimulus until the error s(t) − r(t) reaches the
firing threshold γ(s, t) given by Equation (22) whereupon the
encoder outputs a spike (see Figure 1B). Proceeding in this
way, the neural encoder generates a deterministic spike train
(Figures 2A,B, red spikes) where the spikes are timed at the
discrete jumps in the reconstruction (red trace). Under baseline

FIGURE 8 | Comparison of spike outputs from a cortical pyramidal

neuron, optimal coder, LIF-DT and LIF neuron in response to frozen

noise. Data provided by the INCF Spike Time Prediction Challenge. (A)

Stimulus trace (black), raster plots of cortical response to 13 trials (black),

predicted coder spike train (red), predicted LIF spike train (blue), and predicted

LIF-DT spike-train (magenta) over the entire duration of 21.5 s. Parameters for

the optimal coder were matched to trial #1 (red arrow). The coder and LIF

models’ spike-times are deterministic and only one trial can be generated for

each. (B,C) Expanded views of input and spike times for insets (B,C)

(arbitrarily selected) shown in (A). The optimal coder makes predictions of

(Continued)
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FIGURE 8 | Continued

spike-times that are in good but not complete agreement with the

experimental data. In general, coincidence with coder spike-times is high

when the inter-trial variability in the experimentally determined spike-times is

small. The LIF-DT model has almost equal coincidence. The LIF spike-times

have poor coincidence.

FIGURE 9 | Reconstruction error as a function of filter time-constant

given an energy constraint (fixed spike rate). Experimental data are from

cortical pyramidal neurons. For a given overall spike rate (9.74 spikes/s,

cortical neuron, see Figure 8) the reconstruction error is a function of the filter

time-constant. Explanation follows Figure 5. Best reconstruction filter

time-constants are: 224ms (encoder, filled red circle), 150ms (LIF, filled blue

circle), 187ms (LIF-DT, filled magenta circle), and 157ms (cortical neuron, filled

black circle). Overall the optimal coder, and LIF and LIF-DT spike trains have

similar coding fidelity even though their spike-timings are very different

(Figure 8). See text for more details.

conditions, when there is no change in the input to the optimal
coder, the spikes are produced at the rate set by the energy
constraint. Despite the simplicity of the firing rule and the
linear reconstruction, the optimal coder (Figure 1) differs from
current spike generator models by using feedback to regulate
reconstruction error.

The LIF and LIF-DT neurons were similarly tuned to match
the first-spike time and thereafter generated spikes according to
the dynamics prescribed by Equation (9) (the LIF-DT neuron
additionally incorporated a dynamic threshold). There is no
internal decoder or feedback in the case of the LIF and LIF-DT
neurons, and so spikes were generated in a feed-forward manner.
The firing threshold is a constant, and was determined from a
match to the baseline firing rate.

At this amplitude (Figure 2A, −10 dBV) the peak firing rate
is well below saturation, and there is good agreement with the
experimental spike-times as seen from a comparison of the P-type
and coder spike trains (top). Figure 2A insets magnify the time
period around the stimulus onset (inset a) and offset (inset b).
At the onset of the stimulus, as intensity increases, the optimal
coder predicts that the neuron will rapidly fire spikes to encode
the changing stimulus level with minimal error. At a mechanistic
level this is due to a rapid build-up in the error s(t) − r(t)
resulting in a shortening of the recovery period of the decoder
following a spike (red trace). See also the amplitude-dependency
of the decoder recovery in Figure 1C. Thus, more spikes will
be output in a unit of time. The precision of spike-timing (re:

FIGURE 10 | Stimulus reconstructions from: (1) optimal coder (2) LIF,

and (3) LIF-DT spike trains using a low-pass filter. Experimental data are

from cortical pyramidal neuron depicted in Figures 8, 9. (A) Stimulus (black

trace), and reconstructed stimulus from encoder (top, red), LIF neuron (middle,

blue), and LIF-DT neuron (bottom, magenta). Spike trains as shown in

Figure 8A. Reconstruction error in dBV (re: stimulus) are reported for each

trace, with more negative values indicating smaller error. Reconstruction filters

had time-constants that yielded the lowest reconstruction error (see Figure 9).

(B) Detail of inset shown in A provides magnified view of the stimulus and

reconstructions. For comparison, stimulus and cortical neuron spikes are

shown below the LIF traces. The optimal decoder reconstructions track the

stimulus onset and offset without noticeable delays, and match the stimulus

amplitude. However, the LIF reconstructions are delayed (e.g., arrows at a

and b).

experimental spike times) improves (see timing of last few spikes
in inset a, vs. the first few spikes following stimulus onset).
When the stimulus decays (inset b), the error is sub-threshold
(s(t)− r(t) < γ), and the decoder goes into a free decay between
spikes thereby lengthening the inter-spike interval or ISI. This is
seen more clearly in inset b where the ISI between spikes #3 and
#4 is longer for both coder (red spikes) and experimental P-type
spikes (black spikes). Whenever the error grows slowly, the time
for the error to reach the threshold will be longer, and so the time
interval between spikes increases.
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Stimuli that have high attack and decay rates and which
drive a neuron into saturation (peak firing rate) and suppression
(quench firing) serve to illustrate other aspects of the optimal
coder (Figure 2B, 0 dBV). Following onset, the stimulus grows
so rapidly that the decoder is unable to reduce the reconstruction
error. Spikes are therefore fired at the maximal rate in an attempt
to “catch-up” with the stimulus, reaching saturation well before
the peak of the stimulus (inset c, red arrow). Thereafter, the
source encoder and the afferent both fire at their peak rate. The
reconstruction falls just short of the stimulus at the peak (red
trace in Figure 2B).

On the decaying slope of the stimulus (inset d) the stimulus
falls off rapidly, and its rate of decay is faster than the decay rate
of the filter impulse response (inset d, time-interval around red
arrow). At this point, the neural coder (and the afferent) cease
to fire. It is illustrative to compare inset a with c, and inset b
with d. The most accurate way to represent an extremely sharp
onset (high attack rate) is to fire at maximal rates. Conversely, the
most accurate way to represent a rapid offset (high decay rate) is
to completely cease firing. This is commonly observed in many
neurons that maintain a baseline or spontaneous discharge rate,
for e.g., in auditory nerve fibers (Kiang et al., 1965) where the
behavior is often described as “primary-like” response. Thus, the
source encoder provides an explanation for the rapid changes
in discharge timing at the onset and offset of stimuli, namely,
spikes are placed only where they are needed. This is a major
consequence of the energy constraint and a feature of optimal
coding.

The deterministic optimal coder predicts the number of
spikes and timing fairly accurately. The coincidence factor Ŵ

(Kistler et al., 1997) averaged over 20 trials were 0.2 ± 0.06
(−10 dBV) and 0.49 ± 0.04 (0 dBV). These are conservative
estimates because we used a small window of one-half the EOD
period (0.6ms). Any spikes falling outside this window were not
considered to be coincident. While the features in the timing of
P-type spikes are captured by the optimal coder, the LIF neuron
encodes stimulus amplitude in its firing rate and does not predict
timing (see spike output in Figures 2A,B). The coincidence
values of 0.12 ± 0.04 (−10 dBV) and 0.19 ± 0.04 (0 dBV) are
smaller than coincidence values for the optimal coder. The LIF
neuron does not reproduce the suppression in firing observed in
the afferent and encoder spike trains. Further, LIF firing exhibits
a lag in following the stimulus. This can be seen most clearly
at the stimulus onset (Figures 2A,B) and is discussed in detail
later. The LIF-DT model has a higher coincidence factor than
the LIF model, 0.16 ± 0.09 (−10 dBV), 0.42 ± 0.05 (0 dBV).
Using aMann–WhitneyU-test for the 0 dBV stimuli, we reject the
null hypothesis that the mean coincidences are the same between
the deterministic optimal coder and LIF-DT model (p < 0.01).
For the LIF-DT model and optimal encoder at the −10 dBV
stimulation level, the difference in mean coincidence was not
found to be significant. The mean coincidence for the optimal
coder is significantly higher than the mean coincidence for the
LIF neuron at both the 0 dBV and −10 dBV stimulus levels (p <

0.01).
The temporal features observed in the P-type, optimal coder,

LIF, and LIF-DT neurons are reflected in the peri-stimulus time

histograms (PSTHs, Figure 3) which report spike data over 20
trials at three intensities: Figure 3A (0 dBV), 3B (−10 dBV), and
3C (−20 dBV) for P-type afferent (gray, column 1), optimal
coder (red, column 2), LIF neuron (blue, column 3), and LIF-
DT neuron (magenta, column 4). The smoothed histogram is
also shown as the black trace. The P-type afferent, optimal
coder, and LIF-DT neurons have similar PSTHs and demonstrate
response saturation (Figures 3A1,A2) and varying degrees of
response suppression at stimulus offset (all intensities). It should
be noted that the P-type PSTHs and the optimal coder PSTHs
do not follow the stimulus (depicted in Figure 2). The LIF
PSTH (column 3) on the other hand closely follows the stimulus
but does not demonstrate response saturation or suppression.
Broadly, a comparison of the optimal coder PSTHs (column 2)
with experimental data (column 1) supports the assertion that
the optimal coding principle captures spike-timing features
accurately.

Aggregate spike-rates as a function of stimulus intensity were
estimated for the spike-trains. Figure 4 shows the rate-intensity
curve in logarithmic coordinates. Spike rate (ordinate) is depicted
as an increase in average firing rate within the stimulus window
over the baseline discharge rate. The P-type firing rates are
obtained from experimental data and shown as points (filled
black circles). The spike rates are in good agreement with one
another over a wide range of stimulus amplitudes. All four
neurons convey information about signal amplitude in the firing
rate in nearly identical ways, even though LIF neuron spike-
timing is in disagreement with the P-type afferent, the optimal
coder, and the LIF-DT neuron (Figures 2, 3).

Decoding and Reconstruction Error
A major feature of the optimal coder is that it has an internal
decoder that mirrors a hypothetical post-synaptic membrane,
and this decoder is optimized to minimize the reconstruction
error. In this work we consider a simple RC element (a first-order
low-pass filter) as the decoder, although other types and orders
of filters can be used as well. The first-order filter allows some
simplifications and a closed-form solution of the optimal firing
threshold (γ) (see Materials and Methods, and Mathematics and
Equations). Our assertion is that the role of the neural firing
threshold is to time spikes so that the reconstruction error
is minimized. Figure 5A depicts the reconstruction error as a
function of time constant when an energy constraint (spike rate)
is imposed. For the P-type afferent shown earlier (Figures 2–4),
the optimal coder (red trace) achieves minimum error when
the decoder time constant is τ = 22ms (filled red circle) with
error of−12.7 dBV (standard deviation of 0.1). The trace was
generated using spike data in response to −10 dBV. This time
constant is in the same range as the mean time-constant of
16ms reported for the post-synaptic neuron in the electric fish
hindbrain (Berman and Maler, 1998).

The time constant obtained empirically via Equation (6) is
close to this value across stimulus intensities with some variability
(24.5ms at 0 dBV, 22ms at −10 dBV, and 34.5ms at −20 dBV).
The variability is due to small fluctuations in the inter-trial
baseline firing rates, and is also a practical limitation of the use
of an iterative approach to estimate the time constants from
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Equation (6). Broadly, these time constants are optimum or close
to optimum for the given spike rate constraint, and will provide
minimum-error reconstructions.

In contrast, the LIF and LIF-DT neurons are spike generators
and do not have an internal decoder. However, we can assume
that these model neurons synapse onto a first-order low-pass
membrane solely for the purpose of signal reconstruction. For
a given spike-rate the reconstruction error will be a function of
time-constant. Figure 5A shows the reconstruction for the LIF
neuron using spike data in response to −10 dBV. The optimum
time constant is 11.5ms (filled blue circle) with error of −7.4 ±
0.01 dBV. For the LIF-DT neuron the minimum reconstruction
error was −10.6 ± 0.2 dBV. For comparison, we determined
the time-constant for minimum error reconstruction using the
experimentally determined P-type spike train in the same way
(Figure 5A, filled black circle). The best time-constant is 26.8ms,
with error of −11.4 ± 0.4 dBV. Thus, the hypothetical decoder
parameters and error for the P-type spike train are closer to those
of the optimal decoder and LIF-DT neuron, but not the LIF.
Broadly, Figure 5A supports the assertion that the reconstruction
error is minimized during optimal coding. The optimal coder had
significantly lower reconstruction error than the reconstructions
from the LIF, LIF-DT, and experimental spike-trains (using a
Mann–Whitney U-test with p < 0.01). These results should
be interpreted with some caution, because they apply only to
causal reconstructions with a first-order low-pass filter. Other
types of reconstruction filters or reconstruction strategies, such
as the use of a Bayesian estimator (Gielen et al., 1988) or a
non-causal Wiener filter (de Ruyter van Steveninck and Bialek,
1988; Bialek et al., 1991; Gabbiani, 1996; Gabbiani and Koch,
1996) can lead to lower reconstruction errors. We show this later
with reconstructions from a non-causal Wiener filter using the
experimental spike-times.

Using the optimum time constants from the analyses shown
in Figure 5A, we carried out reconstructions of stimuli from
optimal coder, LIF neuron, and LIF-DT spike trains. Figure 6
depicts reconstructions for the spike trains at three different
stimulus intensities (rows A–C), for optimal coder generated
spike trains (red, column 1) LIF neuron spike trains (blue,
column 2), and LIF-DT neuron spike trains (magenta, column
3). As expected, errors are lower for the reconstructions using
the optimal coder. However, fidelity of coding is only one issue.
The optimal coder reconstruction also preserves amplitude and
timing features of the stimulus unlike the LIF reconstructions
which suffer amplitude and phase (time-delay) distortions, and
temporal distortions such as lengthening (smearing) of estimated
stimulus duration. The quality of reconstructions from the LIF-
DT neuron are in-between those of the optimal coder and the
LIF reconstructions, with noticeable distortion at higher signal
amplitudes and phase distortion at the lowest signal amplitudes.
The LIF-DT neuron preserves spike-timing information much
like the optimal coder (see Figure 2). These results suggest that
information in spike-timing is necessary to recover stimulus
features without distortion and without appreciable time-delay.
This has consequences for signal detection and signal parameter
estimation, and is taken up in detail in the Discussion.

Figure 7 illustrates the effect of reconstruction when using
sub-optimal time-constants, for the stimulus at −10 dBV.

Reconstructions with three filter time-constants are depicted (A–
C), for optimal coder (column 1) and LIF neuron (column 2).
Figure 7A uses a small time-constant (11ms) that is optimal for
the LIF neuron (Figure 5A) but not the coder, Figure 7B uses
a larger time-constant (22ms) that is optimal for the optimal
coder (Figure 5A) but not the LIF neuron, and Figure 7C uses
an arbitrary but large time-constant (45ms) that is sub-optimal
for both coder and LIF neurons. There is appreciable distortion
in the reconstructions from the LIF (column 2) even with the
best time-constant (Figure 7A2), in particular, the onset and
offset times of the reconstruction lag the stimulus. The coder also
introduces distortion at large time-constants (Figure 7C1) but
with less deleterious effect on the onset time and amplitude. At
the lowest time-constant, the coder (Figure 7A1) resembles the
smoothed PSTH (see Figure 3B2) but with noticeable ramping
of the reconstruction at the stimulus onset (the peak of the
reconstruction leads the stimulus). It is likely that spike timing
in the optimal coder (which captures timing features of real
neurons) leads to robust reconstructions when confronted with
a broad range of post-synaptic membrane time-constants. This
may not be true for LIF or renewal-type spike trains where
reconstructions can suffer distortions when the post-synaptic
membrane has a sub-optimal time constant.

Figures 5A, 6, 7, show that the optimal coder formulation
does provide high fidelity reconstructions. However, is it possible
to generate reconstructions that have much higher fidelity than
the optimal coder? The optimal coder proposed here uses a
simple first-order low-pass filter, and other filter structures
can possibly generate better reconstructions. To demonstrate
this we used a non-causal Wiener filter (a minimum mean-
squared estimator or MMSE), similar to the estimator proposed
by Gabbiani (1996) and Gabbiani and Koch (1996). The
experimentally obtained P-type spike-train was used as the input
to the Wiener filter, with the stimulus as the desired output.
The reconstruction errors were much smaller (waveforms are
not shown but are similar to the optimal coder reconstructions
shown in Figures 6A1,B1,C1). They are (with stimulus intensity
in parenthesis): −13.8 dBV (0 dBV), −14.4 dBV (−10 dBV),
and −16.2 dBV (−20 dBV). The corresponding numbers for
the optimal coder reconstructions reproduced from above
are−10 dBV, −12.7 dBV, and −13.9 dBV, respectively. Thus, the
Wiener filter provides about 2-4 dBV improved fidelity. The
improved performance with the Wiener filter is due to the large
number of degrees-of-freedom (the filter-length, 9217 samples,
or 533ms) allowing it to be tuned optimally. Further, some
improvement is also obtained by using a non-causal filter. The
Wiener-filter approach can only be used for reconstruction of
a signal in a given time window when both signal and spike-
times in that window are known. By design, the reconstruction
error is minimized over the entire window. For this reason it
is often referred to as “reverse estimation.” A change in the
signal or the spike-times would result in a different set of filter
coefficients. This is not biophysically realizable. On the other
hand, the first-order optimum decoding filter is causal with only
two degrees-of-freedom (A and τ). The filter parameters can be
fixed in advance and are not signal-dependent. They are fixed
by the energy constraint and hence can be considered intrinsic
biophysical parameters. As discussed later, and supported by
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other research, several biophysical mechanisms can support the
optimum decoder.

Changing the average spike-rate (i.e., the energy-constraint)
profoundly influences reconstruction error. Intuitively we expect
that reconstruction error will reduce with increasing spike
rate (for a fixed reconstruction filter time-constant) due to
improved signal representation. This is true, and is depicted in
Figure 5B as reconstruction error (ordinate) vs. baseline spike
rate (abscissa) at stimulus intensity of −10 dBV. It should be
noted that the depicted lines are simulations. For a given baseline
spike rate, the optimal coder parameters were determined from
Equation (6). Then the optimal encoder was stimulated as in
Figure 2A at −10 dBV. The procedure was repeated to cover
the range of baseline spike rates shown in Figure 5B. The
singleton data points are based on experimental data with the
errors as reported in Figure 5A. The P-type spike rate is shown
as the filled black circle, the matched optimal coder and LIF
neuron spike rates are also shown (filled circles) with some
discrepancy from the experimental rate (±15 spikes/s) due to
the iterative nature of parameter estimation. As expected, the
coding error monotonically decreases with spike rate for the
optimal coder and is smaller than the error for the LIF and LIF-
DT neurons at any spike-rate. In particular, a reconstruction
of the input from the P-type experimental data (black circle)
results in an error that lies between the error from the LIF-DT
neuron matched to the spike-rate of P-type data (magenta circle)
and the optimum coder (red circle). All three reconstructions
are within 3 dBV, and significantly lower than the matched
LIF neuron (blue circle). The coding-error vs. spike-rate curve
shown in Figure 5B represents the energy-fidelity trade-off. It
is outside the scope of this work to specify how exactly the
operating point of the neuron is selected along this curve. It is
presumably regulated by long-term influences from higher levels,
or it may be determined by immediate functional requirements.
Figure 5B is analogous to the rate distortion function (coding
error as a function of bit-rate) used in information theory
to study source encoders (Cover and Thomas, 2006). Just as
reconstruction error can be minimized by transmitting digital
signals at high bit-rates so also are reconstructions improved
with a higher spike-rate. The energy-fidelity curve has received
insufficient attention in the neuroscience literature but is likely
to be a critical parameter when exploring energy-efficient
codes.

Coding in Cortical Pyramidal Neurons of the Rat
Encoding and Spike-timing
Figure 8A shows in vitro data from a cortical pyramidal neuron
(see Materials and Methods) in response to injected current
(frozen noise, top black trace; raster plot of 13 trials), the
optimal coder response (red spikes), and matched LIF neuron
(blue spikes). Total duration is 21.5 s. Note that we filtered the
stimulus (low-pass, with a time-constant of 20.3ms). Parameters
are reported in Materials and Methods. Experimental spike data
from Trial 1 (red arrow) was used to tune the optimal coder and
LIF neuron with a matched spike rate (energy constraint). Insets
B and C, arbitrarily selected (duration 1.5 and 1 s, respectively),
are expanded and shown in Figures 8B,C. Broadly, the optimal

coder predicts spike-timing with good accuracy, with mean Ŵ =
0.38±0.02 compared to the 13 experimental trials. Predictability
was good for those spikes where inter-trial timing is reliable,
but there is greater ambiguity when spike-timing is less reliable
(either missing spikes or shifts in the timing, see Figures 8B,C).
The LIF spike train exhibited poorer coincidence with Ŵ =
0.12 ± 0.02, although it appears to match the cortical and coder
spike trains (Figure 8A, blue spikes). However, when seen on an
expanded scale (e.g., as in Figures 8B,C), it can be seen that there
is poor coincidence reflected in the smaller value of Ŵ. The LIF-
DT neuron also shows comparable performance with the optimal
coder, with Ŵ = 0.38 ± 0.04. The coincidence for the optimal
coder was significantly higher than the LIF model but not the
LIF-DT model (Mann–Whitney U-test, p < 0.01).

Decoding and Reconstruction Error
Figure 9 shows the reconstruction error as a function of
reconstruction filter time-constant for optimal coder (red), LIF
neuron (blue), LIF-DT neuron (magenta) with fixed spike rate
(9.74 spikes/s). This figure and explanations are the same
as Figure 5A. Decoders for reconstructing the LIF and LIF-
DT neuron are hypothetical post-synaptic decoders because
they do not have a built-in decoder. The optimum values
of time-constant are 224ms (optimum coder), 150ms (LIF
neuron), and 187ms (LIF-DT neuron). The best filter for the
experimental cortical spike train is also shown (155ms, filled
black circle). In contrast to the P-type afferent, the reconstruction
errors from optimal coder, LIF, and LIF-DT neurons are
similar and differ by about 1 dBV. The optimal coder had the
lowest reconstruction error (−5.9 dBV), although the LIF-DT
(−5.7 dBV) and experimental (−5.3 dBV) reconstructions are
similar. This is despite the better spike time-prediction with the
optimal coder than with the LIF neuron. The error for optimal
decoding is also higher (compare with reconstruction error from
Figure 5A). The higher error may be due to the lower average
spike rates for cortical cells (9.74 spikes/s).

Optimum reconstructions using the best filter time-constants
from Figure 9 are shown in Figure 10. The stimulus trace
(black) is overlaid with the reconstructions of the stimulus
(optimal coder, red; LIF neuron, blue; LIF-DT neuron, magenta).
Figure 10A covers the entire stimulus duration (reconstruction
errors are specified above the trace), and Figure 10B shows an
expanded view of inset B. Also included in inset B is the cortical
spike train (bottom). In Figure 10B, it can be seen that the
LIF neuron demonstrates considerable lag when reconstructing
sharp transients (e.g., arrows a and b) whereas the optimum
coder reconstruction matches the onset transients with almost
no lag (Figure 10B, top trace). At first glance this is somewhat
puzzling given that the time constant for the LIF neuron (150ms)
is smaller than the time-constant of the decoder built into the
optimal coder (224ms). As a result, the decoder for the LIF spike
train should react with smaller time delay than the optimum
decoder. However, the decay rate of the reconstruction filter
impulse response h(t) (which is a single time-constant) should
not be confused with the complex signal-dependent decay seen
between spikes in the optimum decoder. This is made clear by
Equations (13) and (14) and Figure 1C. The LIF-DT neuron also
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fires spikes when the input stimulus is small. These errors lead
to higher error encoding. For the optimum decoder, the decay
between spikes is signal level-dependent, with a faster decay
when the signal amplitude is high. Thus sharply rising transients
are captured more quickly by the optimum decoder than by
an LIF neuron. The quick response to a rapid attack is also
seen in P-type units (Figures 6, 7). Thus, when used for coding
error, the signal-dependent threshold r(t) has the advantage
that it can follow temporal changes in the input signal more
quickly and with greater fidelity. This is a direct consequence
of the optimal coding mechanism, and the energy-fidelity
trade-off.

Discussion

The motivation for this work rests on the following assumptions:
(1) A neuron is subject to an energy constraint in the form
of a limit on the average spike rate. (2) A neuron must
transmit information with the highest possible fidelity for a
given average spike rate. (3) The encoding neuron has some
idea about the process of decoding. The first two assumptions
are not new. Energy-efficient coding is a topic of wide interest
(see for e.g., Laughlin, 2001; Niven and Laughlin, 2008; for
information theory approaches see Levy and Baxter, 1996; Berger
and Levy, 2010) as is coding fidelity, which has been examined
from information theoretic and statistical signal processing
perspectives (for e.g., see Eggermont et al., 1983; de Ruyter van
Steveninck and Bialek, 1988; Gabbiani, 1996). However, little is
known about the influence of the energy-fidelity trade-off on the
spike-generation process.

The Energy-constrained Optimal Neural Coder
The coding mechanism proposed here addresses the energy-
fidelity tradeoff by assuming that a neuron simultaneously
monitors the quality of its signal encoding while satisfying
an energy criterion. This leads to a firing rule that optimally
times spikes to meet the energy-fidelity trade-off. We choose
the energy constraint to be the fixed long-term average spike-
rate. This is a reasonable choice because spike generation and
transmission consume the most significant part of a neuron’s
energy budget (see Niven and Laughlin, 2008), accounting for
20–50% of the energy consumed by the brain (Laughlin, 2001;
Sengupta et al., 2010). It is very likely that the energy constraint
in a neuron is imposed in many ways, depending on the
species, the type of neuron, etc. [see Sengupta et al. (2010) for
energy efficiency of an action potential, and Sengupta et al.
(2013) for balancing excitation and inhibition]. However, the
biochemical and biophysical processes that constrain energy are
not taken into account here because we consider spike rate
as the dominant constraint, and simply estimate the rate from
the experimental spike data. This is a major simplification and
does not necessarily capture all aspects of an energy constraint.
Future work should incorporate other constraints, such as those
identified by Sengupta et al. (2010, 2013).

The second component of the proposed neural coder is the
mechanism for determining coding fidelity (i.e., decoding). The

most common motif in neural processing is the pre- and post-
synaptic pairing of neurons where the post-synaptic element
filters the pre-synaptic spike train and recovers (decodes) the
original encoded signal. Thus, the simplest decoder is a post-
synaptic membrane that is a leaky integrator. Is it likely that
a neuron has a built-in mechanism that mimics post-synaptic
filtering at least in a broad sense, i.e., a low-pass filter? If
so, it would provide an organism with selective advantage
because sensory neurons could monitor coding fidelity through
an internal estimate of the coding error. We hypothesize that
such an internal decoder h(t) is similar to the well-known
dynamic threshold, also called a moving or adaptive threshold
(Figures 1B,C).

The proposed decoding filter should be interpreted with
care. We are not suggesting that every neuron “matches” its
decoding filter to that of its post-synaptic neuron. Rather, we
suggest that the internal decoding filter [the dynamic threshold
h(t)] is a generic mechanism that converged on “low-pass filter
dynamics” in a blind fashion, over evolutionary time-scales.
The passive cell membrane (lipid bilayer with passive leakage)
is a phylogenetically old structure, and was present in the
earliest single-celled eukaryotes before the advent of voltage-
gated sodium channels (and action potentials). It has most likely
remained unchanged since the earliest organisms, and so it is
not unreasonable to suggest that the neural threshold dynamics
converged to low-pass dynamics. We do not claim that such type
of decoding is true everywhere in the nervous system. However,
for sensory processing at least, where temporal features of stimuli
need to be extracted, a passive membrane is often sufficient for
decoding, and we suggest that this was reasonably approximated
by natural selection in the form of the threshold impulse response
h(t). To state it in other words, in the language of evolution,
generating the decoded signal r(t) is a proximate mechanism,
whereas converging to low-pass threshold dynamics h(t) is the
ultimate mechanism.

The notion of an externally generated error signal is
commonly used in predictive coding models of the auditory
system (for example Balaguer-Ballester et al., 2009) and in
hierarchical prediction in the visual system (for example
Rao and Ballard, 1999; Lee and Mumford, 2003). Predictive
coding models differ from the proposed approach in several
key ways. The predicted input is generated by higher-level
brain structures at the network-level and provides descending
information to generate a reference signal against ascending
sensory information. The proposed neural encoder, however,
is conceptually different and does not rely on a descending
reference signal from higher-level brain structures. Rather, we
propose that individual neurons are capable of tracking encoding
error internally, without direct feedback from upstream neurons.
A significant advantage of internal decoding is the lack of
delay in tracking the coding error because error-tracking can
be implemented at the biophysical rather than the network
level. The rapid dynamics allow for quick adjustments in spike-
timing in response to time-varying stimuli. There is however,
no reason to exclude the possibility that predictive signals
generated from postsynaptic or higher-level neurons can shape
the encoder/decoder response. In fact, it is very likely that tuning
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of the decoder filter (time-constant, gain, etc.) will be subject to
more slowly-varying influences from predictive signals across the
network. These can shape coding on time-scales much longer
than those considered here.

The Threshold as Optimal Decoder
The term “threshold” conventionally referred to a fixed value of
the membrane potential at which a spike is initiated (typically
lying in the range−55mV and−45mV). However, the increased
refractoriness of neurons to sustained stimuli suggested that the
neural threshold may not be a constant, but was influenced by
the history of spiking activity. A dynamic threshold (sometimes
referred to as an adapting or moving threshold) was originally
proposed by Buller et al. (1953) and Hagiwara (1954) as a
mechanism for generating anti-correlations in the observed
sequence of interspike intervals (ISIs) and adaptation in the spike
rate. Numerous forms have appeared in the literature over the
years. In weakly electric fish, the model has been used to predict
ISI correlations using non-resetting (Brandman and Nelson,
2002) and resetting inputs (Chacron et al., 2003). In recent years,
dynamic threshold models using resetting (Jolivet et al., 2004;
Brette and Gerstner, 2005) and non-resetting inputs (Kobayashi
et al., 2009) have been used to predict spike-timing in neurons
with considerable accuracy4 . These are feed-forward applications
used solely for spike generation. Several forms of the threshold
are not dependent on the stimulus s(t) (for example Chacron
et al., 2003), but the form considered here is stimulus-dependent
much like those proposed by Brandman and Nelson (2002) and
Kobayashi et al. (2009). More recent studies of coding and spike
initiation favor a stimulus-dependent threshold (see Platkiewicz
and Brette, 2010; Fontaine et al., 2014). The work reported here
shows that there is an intimate connection between the stimulus
and the threshold, and that such a dependency is necessary for
optimal coding.

We suggest that in the form used here (see Figure 1B) the
threshold is ideally suited to function as a decoder. It can track the
input signal by reconstructing it from the spike train, and provide
an internal error signal. That is, it can keep track of coding
fidelity. The coder then maximizes coding fidelity by producing
an optimum firing policy [firing threshold, γ(s, t)] for timing
spikes. The firing threshold is most appropriately interpreted as
a bound on the permissible coding error (Figures 1B,C). The
error signal manifests as the sub-threshold signal (equivalent
to the sub-threshold membrane potential in biological neurons)
causing the coder to fire when the error reaches the threshold
from below (Figure 1C). For small signals where s(t) ≪ A,
where A is the reconstruction filter gain as in Equation (5), the
firing threshold γ(s, t) is signal-dependent. In the asymptotic
case, when s(t) ≫ A the firing threshold is independent of the
signal, and is constant with γ = A/2. The signal dependency is
highly compressive, i.e., the variation in γ(s, t) over the entire
range s > 0 is limited to the range 0.21A < γ < 0.5A (see
Figures 1B,C, 12). In Figure 1A it can be seen that the neuron

4The multi-timescale adaptive threshold (MAT) model (Kobayashi et al., 2009)
made the best spike-time predictions in the International Neuroinformatics
Coordinating Facility (INCF) 2009 Spike Time Prediction Challenge. See also
Gerstner and Naud (2009) for more information.

fires a spike when the reconstruction error s(t) − r(t) reaches
the firing threshold. Therefore, the coding error is coupled to the
spike generator because it determines when the neuron should
fire. Thus, the proposed coder is a non-linear feedback system
that tracks and regulates the coding-error. This is themost radical
departure from traditional feed-forward neural coding schemes
(spike-generators).

The decoding filter determines the long-term average spike-
rate of the neuron. As such it is the mechanism that imposes
an energy-constraint. We show how the decoder parameters
are set to achieve a given long-term spike-rate (Optimum
Encoder Formulation). Once the decoder parameters are set,
the optimization process and the spike-rate constraint impose a
bound on the reconstruction error. To put it simply, maintaining
a high spike-rate will lead to smaller coding errors and better
reconstructions of the input signal. It is likely that the spike-rate
constraint is imposed by cellular and network processes and is
dependent on the functional role of the neuron in the circuit.
Once the spike-rate is fixed, the product Aτ is known from
Equation (6). Given this single degree-of-freedom, exactly how A
and τ should be uniquely determined may depend on functional
requirements. Once these parameters have been determined, the
optimum firing threshold uniquely fixes the optimal spike-times.
In contrast, the validation of the optimum coder is a “reverse”
problem because the energy constraint (long-term spike-rate)
must be determined from experimental data, and the single
degree-of-freedom given by the product Aτ must be resolved. To
achieve this, the decoder parameters are set so that: (1) the long-
term spike-rate matches the spike-rate from the experimental
data, and (2) the optimal coder produces spike-times that have
the closest match (coincidence) with the experimental spike-
times. This tuning is ad hoc and carried out for the sole purpose
of matching the optimal coder to the experimental spike train.
Once the parameters (A, τ) are fixed, the firing threshold γ(s, t) is
optimized (see Optimization Procedure for Comparison against
Experimental Data).

The dynamic threshold h(t) has been proposed, in a
broad sense, as evolutionary convergence to low-pass (passive
membrane) dynamics. It is not a perfect decoder, nor is it
exclusive, and it leaves ample room for other processes to
come into play. One possibility is that more complex threshold
dynamics can be considered, such as second- and higher-
order low-pass filters (Kobayashi et al., 2009), a form such as
A exp(c/t) (Hagiwara, 1954), or the linearized form of Hagiwara’s
threshold (Buller et al., 1953; Brandman and Nelson, 2002).
These filter structures may be tuned by descending influences
to shape stimulus coding, as discussed later. Another possibility
is the use of pre-filtering. While the threshold r(t) proposed
here is most likely located in the trigger zone of the neuron,
dendritic and somatic processing can tune the time-scales of the
inputs to which the neuron is responsive. For example, low-
pass filtering in the dendrites or soma can shape the bandwidth.
The optimal coder framework proposed here does not take into
account such filtering because the coder has no access to any
of the upstream operations that shape s(t). This is particularly
relevant when considering models that use some form of leaky-
integration with a known filter G(ω) (fourier transform of the
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impulse response g(t)). In this case, if the delivered stimulus is
X(ω) then the sub-threshold membrane potential is given by
S(ω) = G(ω)X(ω), where S(ω) is the fourier transform of s(t).
The coder encodes s(t) but has no knowledge of the delivered
stimulus x(t). Linear operations such as these will not introduce
anharmonic distortions during reconstruction. However, non-
linear operations such as resetting the integrated input (as in the
various forms of the LIF neurons with dynamic threshold, such
as the LIF-DT neuron, e.g., Chacron et al., 2001, 2003; Liu and
Wang, 2001; Jolivet et al., 2004; Brette and Gerstner, 2005) or the
use of dynamic threshold with non-linear integrate and fire (IF)
models such as the exponential IF neuron (e.g., Fontaine et al.,
2014, based on the exponential IF model of Fourcaud-Trocmé
et al., 2003) will introduce distortions in the reconstructions
and can potentially affect coder performance. We have shown
that one consequence of resetting in the LIF-DT model is
an increase in the reconstruction error (as compared to the
optimal encoder, see Figure 5). The effects of such non-linearities
on coding fidelity need to be carefully examined, but are not
considered further here. The most appropriate combination of
pre-filtering operations or choice of decoding filter parameters
will most likely depend on the functional role of the neuron
in the given circuit. The proposed coder does not rule any of
them out. Our goal is to demonstrate that the threshold can
track coding-error and provide internal feedback to the spike
generator.

In this work we consider a time-varying threshold at
an abstract level by lumping all the currents into a simple
adaptation model (a low-pass element). This approach leads
to an analytically tractable model but does not explicitly
model biophysical mechanisms. Biophysically realistic currents
can be incorporated into the threshold dynamics. Benda and
Herz (2003) incorporate M-current, AHP currents, and slowly
recovering Na currents, while Jolivet et al. (2004) consider a
full-conductance model that incorporates an adapting potassium
conductance. Liu and Wang (2001) and Benda et al. (2010)
provide a comparison of models with dynamic (adapting)
threshold and biophysically realistic currents such as those
considered by Benda and Herz (2003). Chacron et al. (2001,
2003) suggest that the low-pass dynamics built into their dynamic
threshold model may be mediated by Kv3.1 channels, but
their model did not specifically incorporate Kv3.1 dynamics.
In summary, there is a diversity of approaches in the study
of dynamic or adapting thresholds, ranging from the abstract
to the biophysically realistic. We hope that this work will
spur biophysically realistic refinements to the proposed optimal
coder.

Non-resetting dynamic threshold models (Brandman and
Nelson, 2002; Kobayashi et al., 2009) use ad hoc firing-rules, such
as s(t) − r(t) = 0, rather than the more general firing policy s(t)
− r(t) = γ = γ(s, t) which allows γ to be optimized for coding
fidelity. Indeed, the motivation for proposing a general firing
policy here is to allow the reconstruction error to be minimized
in a principled and optimal way. Further, it makes apparent
the close connection between the time-varying threshold and
reconstruction. Earlier models that used dynamic thresholds
were designed to match spike-times or interval statistics and are

not optimized for coding fidelity. They are sub-optimal coders.
By imposing an energy-constraint and a fidelity criterion, we
can derive an optimum firing policy. This policy optimally times
spikes and demonstrates that the threshold is an optimal coder.
The LIF neuron exhibits much higher errors (Figures 5, 9), as will
any feed-forward spike generator that does not regulate error.
Models such as LIF-DT perform better than the LIF neuron
provided they are tuned to match the spike-rate and spike-
times, as done by Kobayashi et al. (2009). However, the lack of
a built-in decoder and the hard non-linearity due to the reset
of the integrator following a spike will result in sub-optimal
reconstruction (Figures 5, 9) and introduce phase distortions
(Figure 6).

While the impulse response of the time-varying threshold
h(t) has simple first-order dynamics, the error signal s(t) −
r(t), Equation (1), demonstrates multi time-scale behavior. The
decay rate of the error signal (between ISIs) is governed by
the signal amplitude in addition to the time-constant of the
threshold h(t) (Figure 1C). The time-constant of the threshold is
set by the energy-constraint (spike rate), and governs mean spike
rate. However, the instantaneous firing rate is further regulated
by the amplitude of the time-varying input signal [Equations
(13) and (14)] allowing for fine control of the spike-timing.
A voltage-dependent conductance with variable time-constant
can readily serve to encode such error dynamics. The firing
threshold γ is dependent on the value of the input signal s(t)
although this dependence is fairly small (see above for more
details, and Figures 1B,C, 12). In most cases the threshold can be
approximated by γ = A/2. There is evidence suggesting that the
firing threshold may be dependent on the signal-level. Recently
for example, Fontaine et al. (2014) showed that spike-thresholds
can vary with the level of the membrane voltage. While their
model assumes fast adaptation (of the order of 1ms), and is based
on Na-channel inactivation, the time-constants exhibited by h(t)
for the data considered here cover much larger timescales, from
10 to 100ms. These may be mediated by a voltage-dependent
conductance, such as theM-current which is known to contribute
to increased refractoriness on short to long time-scales (Brown
and Adams, 1980).

Optimum Spike-timing and Stimulus Coding
The predictions made by the optimal coder are supported by
data on spike-timing in peripheral and cortical sensory neurons.
Broadly, the optimal coder captures spike timing (Figures 2, 3, 8–
10). This is not surprising because time-varying thresholdmodels
are known to predict spike timing with good accuracy (Kobayashi
et al., 2009). The optimal coder, however, provides a principled
way to generate spikes and makes predictions. For example, it
provides an explanation for the responses at stimulus onset and
offset. The coder is sensitive to rapid changes in the signal, and
will fire rapidly for large positive gradients to keep the error
within limits (onsets in Figures 2, 3, 10B). Likewise, the best
firing policy when the signal decays faster than the reconstruction
is to not fire at all (Figure 2B, inset d), otherwise a spike will cause
the reconstruction error to increase. Thus, the onset and offset
responses seen in the P-type afferent data and in other primary
and primary-like sensory neurons (for e.g., Kiang et al., 1965) are
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a natural outcome of optimal coding, and a consequence of error
regulation using feedback (Figure 1A).

Reconstructions from the internal decoder accurately track
the time-course of the stimulus without amplitude or phase
distortions (Figures 6, 10B, coder, and compare with LIF and
LIF-DT). In particular, the onset is tracked without delay
(Figure 6) over a range of decoder time-constants (Figure 7)
found in P-type post-synaptic neurons (Berman and Maler,
1998). Thus, the optimal coding neuron can perform sequential
(real-time) signal detection with minimum delay thereby
allowing for the rapid detection of sensory signals (Ratnam and
Nelson, 2000; Goense and Ratnam, 2003). This is an ethologically
important function across taxa.

The proposed encoder is based on simple assumptions and
it is deterministic, but the prediction of spike-times is good
even when the spike rate is low, as with the cortical neuron
(Figures 8, 10). In particular, input fluctuations between spikes
(e.g., Figures 8B,C, 10B) which are not accounted for in the
coder do not seriously degrade the predicted spike times. This
is presumably due to the energy constraint which implicitly
fixes the temporal and amplitude scales to which the decoder
is responsive. For example, spikes are almost always preceded
by rapid attacks with large amplitudes (see earlier), while small
amplitude fluctuations appear to be damped (Figures 8B,C,
10B). This suggests that the time-varying threshold may be
matched to the statistical properties of the input (via the error
signal, Figure 1C), particularly to the time-scales of behavioral
relevance, with the neuron tuning its energy-fidelity trade-off to
best suit its function. Recently, Fontaine et al. (2014) showed
that a fast threshold adaptation mechanism allows the neuron
to respond to spikes arriving on millisecond time-scales but
filters out slowly varying voltages that are not relevant. An
alternative approach to the one proposed here, based on Bayesian
inference, also generates a firing rule where the neuron responds
maximally to the arrival of new information, e.g., fluctuations
in the input (Deneve, 2008). These and other studies on spike
thresholds suggest that the time-scale of relevance can shape the
time course of threshold dynamics, so that salient information is
transmitted in the bandwidth of interest. Interestingly, the time-
scale for information processing as proposed here and in other
studies, can be shaped by long-term influences (incorporating
prior information, learning, etc.) to alter the desired bandwidth
as needed. In doing so, the energy-fidelity tradeoff (Figure 5B)
provides a locus of operating points along which the neuron
remains energy-efficient without compromising coding quality.

Conclusions

The optimal coding scheme proposed here is a hypothesis. If
validated, it would demonstrate that neural coding is not simply a
feed-forward process, but involves error regulation that is tightly
coupled to an energy constraint. Spikes, which are a precious
commodity, would be judiciously output so as to maximize
coding fidelity. This would suggest that a single neuron is a
far more reliable coder than has been assumed. We provide
preliminary evidence to show that a deterministic firing rule leads
to accurate predictions of spike times and the various features of

the PSTH. This lends support to the hypothesis, but more work
is required to verify and consolidate these ideas, particularly to
establish biophysical mechanisms.

A time-varying threshold has been inferred but has never been
directly measured (e.g., most recently, Fontaine et al., 2014). The
proposed neural coder can be validated only if the threshold
can be measured and if its mechanisms can be determined.
Biophysical mechanisms that can estimate the error s(t) − r(t)
(Figure 1C) should demonstrate two key features: (1) they should
be closely coupled tometabolic processes so that firing rate can be
brought under metabolic control, and (2) they must be present
in the trigger zone so that they can regulate the firing threshold.
There are candidate mechanisms that satisfy these criteria. For
instance, the KCNQ/Kv7 (M-current) family of channels (Brown
and Adams, 1980) may be likely candidates: (1) They are a
regulator of neuronal excitability, and are coupled to metabolic
processes via the membrane phospholipid PI(4,5)P2 (Delmas and
Brown, 2005). (2) They are present in the axonal initial segment
where spike initiation takes place (Pan et al., 2006). (3) They
have a variable time-constant (approximately 10–100ms)making
it ideal for adjusting ISI timing in response to the error signal,
are open at supra-threshold values of the membrane potential,
and do not inactivate. These factors make them suitable initial
candidates for further investigation. Other types of currents may
also be involved at the trigger zone and can govern threshold
adaptation over millisecond time-scales to much longer time-
scales (across several ISIs). These will further influence the time-
scales of coding.

Mathematics and Equations

Consider a reconstruction filter that resembles the post-synaptic
membrane of a receiver neuron. The simplest form is a
RC element (first-order low-pass filter) with impulse response
given by

h(t) = A exp(−αt), t > 0. (12)

We assume that this filter is internal to the optimal coding neuron
(Figure 1A). The energy-constraint (spike rate) is determined
from the amplitude A and time-constant τ = α−1. Let the coder
output a spike at t = 0 then the decoded signal is of the form
(Figure 1B)

r(t) = C(s) exp(−αt), t > 0, (13)

whereC(s) is a function depending on the input signal s(t). Spikes
are fired according to Equation (1) when s(t)− r(t) = γ.

Critically, we assume that s(t) changes muchmore slowly than
r(t) and therefore remains approximately constant with value s
between spikes (Figure 11). This simplifying assumption is valid
at high spike-rates, when the time between spikes is small. As the
inter-spike interval shrinks, the signal can be approximated with
decreasing error by a piece-wise constant approximation. This
error is bounded by Taylor’s Theorem, and the approximation
error approaches zero as the spike-rate approaches infinity. Using
this simplifying assumption, it is possible to derive an expression
for γ which is valid in the limit of high spike-firing rates.
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FIGURE 11 | Geometrical interpretation of the optimization procedure

that will perform a minimum-error reconstruction r(t) of a signal s(t)

given a constraint on the mean firing rate (T̄−1). The signal s (black line) is

assumed to be constant within the time-scale of interest (between adjacent

spikes). The reconstruction r(t) (red) is a single-pole low-pass filter with

parameters A and α. It suffers a discrete jump of magnitude A whenever the

encoder emits a spike. The decoder then relaxes until it reaches a threshold of

s− Ac whereupon the encoder emits a spike. For fixed s, A, c, and α, the

interspike interval is T̄ (see text). The parameters A and α are known, and

determined from a constraint on T̄, and s is the instantaneous level of the

signal and is a free variable. Only c is to be determined so that the error

between r and y is minimized. Here we optimize the value of c so as to

minimize the mean-squared value of the reconstruction error s(t)− r(t). Note

that the reconstruction r(t) is signal level-dependent and carries with it a history

of prior spiking activity. Thus, the threshold value of the reconstruction error

(Ac) will in general be signal level-dependent. See text for details on the

optimization procedure.

Now, we assume the form

C(s) = s+ A(1− c), (14)

where 0 ≤ c ≤ 1 is unknown and yet to be determined, and
is perhaps dependent on some or all of s(t), A, α, and y. The
parameter c positions the relaxing exponential with respect to
the signal s (Figures 1B, 11), and the goal is to ask what value
of c will produce the smallest mean-squared reconstruction error
s(t)− r(t).

We assume that s > Ac; otherwise the encoder will never fire.
At time t = 0−, let r(0−) = s−Ac. This is the threshold for firing
a spike. Note that the threshold is reached from above by r(t),
and at all times r(t) ≥ s−Ac. The encoder emits a spike at t = 0.
Instantly, the decoder suffers a finite jump of magnitudeA so that
at t = 0, r(0) = A(1−c)+ s = C(s). If the condition r(t) = s−Ac
is not met, the encoder holds at zero (does nothing). At t = T̄, the
decoder will relax to the value r(T̄) = s−Ac and the encoder will
fire the next spike. The parameter T̄ (mean interspike interval)
is the energy-constraint because it determines the mean spike
output over time. It can be obtained from experimental data (for
example, from themean long-term firing rate). The parameters of
the decoder, A and α, are determined from T̄ (see further below).

The total excursion by r(t) in time T̄ (between spikes) is A. Let
ε = s/A, with ε > c, we have

T̄ = −
1

α
loge

ε − c

1+ ε − c
. (15)

In the following treatment we consider only a single time
interval between two spikes, separated by time T̄. We will
determine the optimum value of c that minimizes the mean-
squared error between r(t) and y. Let E denote the mean-squared
reconstruction error in the interval (0, T̄). That is,

E =
∫ T̄

0
(s(t)− r(t))2 dt

= A2
∫ T̄

0
((1+ ε − c) exp(−αt)− ε)2 dt, (16)

where we have made use of the substitution r(t) = A(1 + ε −
c) exp(−αt). Substituting for T̄ from Equation (15) and carrying
out the integration we obtain

E =
A

2α

2 {

1− 2ε − 2c− 2ε2 loge
ε − c

1+ ε − c

}

. (17)

All terms on the right side except for c are fixed. Taking the
derivative of E with respect to c we obtain

dE

dc
=

A

α

2 {

ε2

ε − c
−

ε2

1+ ε − c
− 1

}

. (18)

Setting dE/dc = 0, and noting that A > 0, α > 0, and ε > c, we
obtain a quadratic equation for c

f (c) = c2 − (1+ 2ε)c+ ε = 0. (19)

Due to the constraint 0 ≤ c ≤ 1 only one root is a valid solution,
and this is

c =
(1+ 2ε)−

√
1+ 4ε2

2
. (20)

The second derivative dE2/dc2 is

d
2
E

dc
2 =

A2ε2

α

{

1

(ε − c)2
−

1

(1+ ε − c)2

}

. (21)

At the extreme value given by Equation (20), d2E/dc2 = 1 +
4ε2 > 0. Hence Equation (20) minimizes E.

Thus, given that the neuron fired a spike at t = 0, and the
signal varies more slowly than h(t), the time to the next spike will
be given by the firing rule

s− r(t) = Ac = A

{

(1+ 2ε)−
√
1+ 4ε2

2

}

. (22)

More generally, we can define a continuous threshold function

γ = f (s, t) = Ac, (23)

where c is the instantaneous signal- and time-dependent function
given by Equation (20). This leads to the firing rule given in
Equation (22).

We make the following observations:
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1. The optimum value of c that minimizes the reconstruction
error will depend only on ε and no other parameter.

2. The function f (c) is a strictly monotone decreasing function
in [0, 1]. Further, at c = 0, f = 1, and at c = 1, f =
−1. This implies that f has a real root in the interval [0, 1],
and this is given by the solution Equation (20). Further, for
large ε, f is approximately a straight line with slope of −2.
Using this asymptotic approximation we have lim

ε→∞
c = 1/2

(Figure 12A).
3. When A is comparable to s, that is when ε ≈ 1 the optimum

value of c deviates considerably from 1/2. For example, when
ε = 1, c = (3−

√
5)/2 = 0.382 (Figure 12A).

4. Figure 12B depicts the error function E (in dBV) as a function
of c which is parameterized by ε. The locus of points joining
the minima of the curves (optimum c) is shown (dashed line)
with the asymptote (dotted line). Deviations of the optimum
value of c are noticeable at values of ε that are smaller than
about 10. The shaded area between the curves 3.4 ≤ ε ≤ 5.7
denotes the range of ε values used to stimulate the cortical
pyramidal neuron depicted in Figures 8, 10.

Figure 1B depicts the signal s(t) and the reconstruction r(t) along
with the spike times. The threshold is depicted as a function
γ = γ(s, t) that forms the lower envelope of r(t). The encoder
fires when r(t) hits this envelope. This is a form of a non-resetting
adapting threshold (Brandman and Nelson, 2002; Kobayashi
et al., 2009). Figure 1C depicts the reconstruction error s(t)−r(t)
as a function of time. Viewed in this way, the threshold is shifted
so that it has a baseline given by −γ = −Ac, where c is also a
function of signal level s, as specified by Equation (20). In contrast
with the representation in Figure 1B, the firing threshold is
here viewed as a bound on the error s(t) − r(t). We conjecture
that it is this error signal that has a biophysical analog in real

neurons, and which drives the spike generator (encoder) (see also
Figure 1A).

If the signal is very small, almost approaching zero (ε → 0)
then c → 0, and the coder could put out an occasional spike
over long durations. However, this may not be desirable because
the best reconstruction of a vanishingly small signal may be to
not fire a spike at all, and to let the decoder decay freely down to
0. Thus there is an upper-bound on ε beyond which the optimal
policy is to not spike. This bound is determined by comparing the
reconstruction error if a spike is fired vs. the reconstruction error
assuming no spike is fired.

Let the reconstruction error E following a spike be specified
as before by Equation (16). We define E0 as the error in
reconstruction if no spike was output at t = 0, with the decoder
going into a free decay. E0 is given by

E0 =
∫ T̄

0
(s(t)− s(0)e(−t/τ ))2 dt, (24)

where r(t) is as given by Equations (13) and (14). We are
interested in determining the value of ε where E = E0. This is
a cumbersome problem but a good approximation is as follows.
We note that r(t = T̄) = s − Ac < s, and if no spike is fired
then r(t) will further decay and become smaller. Further, s(t) by
assumption is a small signal (ε is small). Thus we set r(t) = 0 and
this simplifies the calculations. This yields

E0 =
∫ T̄

0
s2(t) dt. (25)

Given that s(t) = s, we obtain from Equations (15) and (25)

E0 = s2T̄ = −
s2

α
loge

ε − c

1+ ε − c
. (26)

FIGURE 12 | Optimal coder threshold parameter and reconstruction

error. (A) Threshold parameter c (ordinate) as a function of normalized

amplitude ε = s/A (abscissa) showing the wide range of ε over which the

asymptotic value of the threshold (c = 0.5) holds. As ε approaches 1, c

decreases rapidly. When the signal is small, such that ε < 1/
√
12 = 0.289

(c ≤ 0.21), the optimum policy is to suppress firing because the

reconstruction error upon firing a spike will be larger than the error from not

spiking. (B) Reconstruction error (ordinate, in dBV) as a function of threshold

parameter c (abscissa) parameterized by the amplitude ratio ε. The locus of

optimum values c* for which error is a minimum is shown by dashed line. The

large signal asymptote (c = 0.5) is shown as dotted line. The shaded region

indicates the values of ε between the 10th and 90th percentile for the noise

stimulus shown in Figures 8, 10. In this range the optimum c* lies between

0.464 ≤ c ≤ 0.478.
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From Equations (17) and (26) this yields

1

2αε2
(1− 2c− 2ε) = 0. (27)

Substituting for c from Equation (20) we obtain

√

1+ 4ε2 − 4ε = 0, (28)

which simplifies to

ε =
1

√
12

= 0.289. (29)

For values of ε smaller than Equation (29) the neuron should
not fire a spike. From Equation (20) this limit corresponds to
c = 0.21. So the optimal coder fires a spike only in the region

ε > 0.289 or equivalently, 0.21 < c < 0.5, (30)

and suppresses firing otherwise. Figure 12A shows the functional
relationship between c and ε. The function is highly compressive
(note the log scale of the abscissa). As ε → ∞ we have the
asymptotic result c → 0.5. This is a useful approximation over
a fairly wide range of ε approaching 1, and suggests that the error
is robust to changes in c. It is a particularly good approximation
for the P-type neurons in electric fish that are reported here. They
have a high baseline rate of firing. Figure 12A also shows the
region along the ε-axis where subthreshold signals will not elicit a

spike. The bound provided by Equation (29) is an approximation,
and the real bound is likely to be somewhat higher.

We have illustrated the optimization problem and the
determination of the optimum firing rule using a simple
reconstruction filter with a slowly-varying signal that is constant
within an interspike interval. This is admittedly a simplification.
For arbitrary signals, with more general forms of the filter, the
optimization problem specified by Equation (2) is in general
difficult and may not lead to closed-form solutions such as
Equation (22). Further work is needed to determine the influence
of various forms of the low-pass filter and signal bandwidth on
the shift in optimum spike-timing.
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