10 research outputs found

    A U-shaped relationship between haematocrit and mortality in a large prospective cohort study

    No full text
    Background: Only a limited number of studies have investigated the correlation between haematocrit (HCT) and mortality in the general population, and few of those studies have had data on a wide range of low and high levels of HCT. We investigated the association between baseline HCT and mortality in a prospective cohort study of 49 983 adult subjects in Iran with a broad spectrum of HCT values. Methods: Data on socio-demographic and life-style factors, past medical history, and levels of HCT were collected at enrollment. During a mean follow-up of 5 years (follow-up success rate ±99%), 2262 deaths were reported. Cox proportional hazards regression models were used to estimate hazard ratios and corresponding 95% confidence intervals. Results: There was a U-shaped relationship between categories of HCT and mortality in both sexes: both low and high levels of HCT were associated with increased overall mortality and mortality from cardiovascular disease. The U-shaped relationship persisted after several sensitivity analyses were done, including analyses restricted to non-smokers and non-users of opium; analyses excluding deaths from accidents and other external causes as well as deaths of persons with self-reported ischemic heart disease at the baseline interview for the study; and analyses excluding the first 2 years of follow-up. Self-reported past medical history and lack of data about lipids and other cellular blood components were the major limitations of the study. Conclusions: Low and high levels of HCT are associated with increased mortality in the general population. The findings in the present study can be of particular importance for low- and middle-income countries in which a substantial proportion of the population lives with suboptimal levels of HCT. © Published by Oxford University Press on behalf of the International Epidemiological Association 2013

    Renal Function and Risk Factors of Moderate to Severe Chronic Kidney Disease in Golestan Province, Northeast of Iran

    Get PDF
    Introduction: The incidence of end-stage renal disease is increasing worldwide. Earlier studies reported high prevalence rates of obesity and hypertension, two major risk factors of chronic kidney disease (CKD), in Golestan Province, Iran. We aimed to investigate prevalence of moderate to severe CKD and its risk factors in the region. Methods: Questionnaire data and blood samples were collected from 3591 participants (≥18 years old) from the general population. Based on serum creatinine levels, glomerular filtration rate (GFR) was estimated. Results: High body mass index (BMI) was common: 35.0 of participants were overweight (BMI 25-29.9) and 24.5 were obese (BMI ≥30). Prevalence of CKD stages 3 to 5 (CKD-S3-5), i.e., GFR <60 mL/min/1.73 m2, was 4.6. The odds ratio (OR) and 95 confidence interval (95 CI) for the risk of CKD-S3-5 associated with every year increase in age was 1.13 (1.11- 1.15). Men were at lower risk of CKD-S3-5 than women (OR = 0.28; 95 CI 0.18-0.45). Obesity (OR = 1.78; 95 CI 1.04-3.05) and self-reported diabetes (OR = 1.70; 95 CI 1.00-2.86), hypertension (OR = 3.16; 95 CI 2.02-4.95), ischemic heart disease (OR = 2.73; 95 CI 1.55-4.81), and myocardial infarction (OR = 2.69; 95 CI 1.14-6.32) were associated with increased risk of CKD-S3-5 in the models adjusted for age and sex. The association persisted for self-reported hypertension even after adjustments for BMI and history of diabetes (OR = 2.85; 95 CI 1.77-4.59). Conclusion: A considerable proportion of inhabitants in Golestan have CKD-S3-5. Screening of individuals with major risk factors of CKD, in order to early detection and treatment of impaired renal function, may be plausible. Further studies on optimal risk prediction of future end-stage renal disease and effectiveness of any screening program are warranted. © 2010 Najafi et al

    Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Epidemiological survey of animal bites in Kalaleh district, North of Iran (2003-05)

    No full text
    Background and Objective: Animal biting is a very important threat for human health, due to the post-infections, such as rabies, which would be fatal. This Study was carried out to determine the epidemiological aspects of animal bites in Kalaleh district, North of Iran. Materials and Methods: In this descriptive and cross sectional study, all cases with animal biting during 2003-05 which were reffred to Kalaleh, Maraveh- tappeh therapy centers in Golestan province North of Iran were considered as sujects of this epidemiological survey. Results: From the totally 3496 biting, during 3 years, 2477 cases (70.9%) were male and 1019 (29.1%) female. The Mean age of cases was 24.2±17.5 and age domain between 1 to 86 was variable. The biting incidence rate was increased during 3 years, as follow 2003, 2004 and 2005 were 745/100000, 787/100000 and 788/100000 respectively. Total incidence was 773/10000 during the 3 years, the most biting frequency belong to the students 1157 (37%). Lower limb was the most common site of biting 2344 (67%). Dog was the common animal in biting 3344 (95.6). Most biting happened in spring season 1042 (29.8%). 3151 cases (90.1%) were living in rural area. 3198 cases (91.5%) and 298 (98.5%) had complete and uncompleted vaccination respectively. Conclusion: According to the results from this survey, the rate of dog biting in Kalaleh district was more than the other region, therefore, it would be important that all concerning organizations interfere to prevent and control this health threat

    Ecological characters of leishmaniasis vectors in Kalaleh district, Golestan province, Iran, (2006-07)

    No full text
    Background and Objective:leishmaniasis is a Zoonotic disease that is transmited by sandfly to human. This study were carried out in order to demonstrate some ecological characters of leishmaniasis vectors in Kalaleh district, Golestan province ,Iran, during 2006-07. Materials and Methods: In present study 6 villages were selected. Sandfly were collected by sticky traps. 3 places were sampled in each village and in each places 20 traps were installed. After sampling collection, we used diagnostic criteria to identify the Sandflies, also confirmed human cases were recorded according to the months of identification. Results: 4900 sandflies were detected in 6 villages and 12 species of sandflies were identified, which including P.papatasi, P.mongolensis, P.caucasicus, P.caucasicus group, P.sergenti, P.alexandri, P.kazeroni, P.brevis, P.(adlerius) sp, S.sintoni, S.clydei, S.sogdiana). P.papatasi was predominant species in indoor places (46.1%) and S.sintoni was in outdoor places (36.7%). Sandflies activities extended from early May through mid October with two peaks in mid June and September. Human infection had a important peak in January. During the collection of sandflies, the species of P.alexandri, P.kazeroni, P.brevis, P.(Adlerius sp.), S.clydei and S.sogdiana were collected for the first time from this area. Conclusion: In this study, P.papatasi was the predominant species in this area. Sandflies second activity peak occured in September that is crucial for transmission of disease. The incubation period for this disease was four months

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore