22 research outputs found
Exploring the genetics of irritable bowel syndrome: A GWA study in the general population and replication in multinational case-control cohorts
OBJECTIVE:
IBS shows genetic predisposition, but adequately powered gene-hunting efforts have been scarce so far. We sought to identify true IBS genetic risk factors by means of genome-wide association (GWA) and independent replication studies.
DESIGN:
We conducted a GWA study (GWAS) of IBS in a general population sample of 11\u2005326 Swedish twins. IBS cases (N=534) and asymptomatic controls (N=4932) were identified based on questionnaire data. Suggestive association signals were followed-up in 3511 individuals from six case-control cohorts. We sought genotype-gene expression correlations through single nucleotide polymorphism (SNP)-expression quantitative trait loci interactions testing, and performed in silico prediction of gene function. We compared candidate gene expression by real-time qPCR in rectal mucosal biopsies of patients with IBS and controls.
RESULTS:
One locus at 7p22.1, which includes the genes KDELR2 (KDEL endoplasmic reticulum protein retention receptor 2) and GRID2IP (glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein), showed consistent IBS risk effects in the index GWAS and all replication cohorts and reached p=9.31
710(-6) in a meta-analysis of all datasets. Several SNPs in this region are associated with cis effects on KDELR2 expression, and a trend for increased mucosal KDLER2 mRNA expression was observed in IBS cases compared with controls.
CONCLUSIONS:
Our results demonstrate that general population-based studies combined with analyses of patient cohorts provide good opportunities for gene discovery in IBS. The 7p22.1 and other risk signals detected in this study constitute a good starting platform for hypothesis testing in future functional investigations.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart
Heart formation requires a highly balanced network of transcriptional activation of genes. The homeodomain transcription factor, Shox2, is essential for the formation of the sinoatrial valves and for the development of the pacemaking system. The elucidation of molecular mechanisms underlying the development of pacemaker tissue has gained clinical interest as defects in its patterning can be related to atrial arrhythmias. We have analyzed putative targets of Shox2 and identified the Bmp4 gene as a direct target. Shox2 interacts directly with the Bmp4 promoter in chromatin immunoprecipitation assays and activates transcription in luciferase-reporter assays. In addition, ectopic expression of Shox2 in Xenopus embryos stimulates transcription of the Bmp4 gene, and silencing of Shox2 in cardiomyocytes leads to a reduction in the expression of Bmp4. In Tbx5del/+ mice, a model for Holt-Oram syndrome, and Shox2−/− mice, we show that the T-box transcription factor Tbx5 is a regulator of Shox2 expression in the inflow tract and that Bmp4 is regulated by Shox2 in this compartment of the embryonic heart. In addition, we could show that Tbx5 acts cooperatively with Nkx2.5 to regulate the expression of Shox2 and Bmp4. This work establishes a link between Tbx5, Shox2 and Bmp4 in the pacemaker region of the developing heart and thus contributes to the unraveling of the intricate interplay between the heart-specific transcriptional machinery and developmental signaling pathways
Alternative Splicing and Nonsense-Mediated RNA Decay Contribute to the Regulation of SHOX Expression
The human SHOX gene is composed of seven exons and encodes a paired-related homeodomain transcription factor. SHOX mutations or deletions have been associated with different short stature syndromes implying a role in growth and bone formation. During development, SHOX is expressed in a highly specific spatiotemporal expression pattern, the underlying regulatory mechanisms of which remain largely unknown. We have analysed SHOX expression in diverse embryonic, fetal and adult human tissues and detected expression in many tissues that were not known to express SHOX before, e.g. distinct brain regions. By using RT-PCR and comparing the results with RNA-Seq data, we have identified four novel exons (exon 2a, 7-1, 7-2 and 7-3) contributing to different SHOX isoforms, and also established an expression profile for the emerging new SHOX isoforms. Interestingly, we found the exon 7 variants to be exclusively expressed in fetal neural tissues, which could argue for a specific role of these variants during brain development. A bioinformatical analysis of the three novel 3′UTR exons yielded insights into the putative role of the different 3′UTRs as targets for miRNA binding. Functional analysis revealed that inclusion of exon 2a leads to nonsense-mediated RNA decay altering SHOX expression in a tissue and time specific manner. In conclusion, SHOX expression is regulated by different mechanisms and alternative splicing coupled with nonsense-mediated RNA decay constitutes a further component that can be used to fine tune the SHOX expression level
Biallelic variants in CSMD1 are implicated in a neurodevelopmental disorder with intellectual disability and variable cortical malformations
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder
A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease
Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction
caused by dysfunction of neural crest cells and their progeny during enteric nervous system
(ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for
disease phenotype are identified only in a minority of cases, and the identification of novel
disease-relevant genes remains challenging. In order to identify and to validate a potential
disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and databas
Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments.
International audienceSHANK genes code for scaffold proteins located at the post-synaptic density of glutamatergic synapses. In neurons, SHANK2 and SHANK3 have a positive effect on the induction and maturation of dendritic spines, whereas SHANK1 induces the enlargement of spine heads. Mutations in SHANK genes have been associated with autism spectrum disorders (ASD), but their prevalence and clinical relevance remain to be determined. Here, we performed a new screen and a meta-analysis of SHANK copy-number and coding-sequence variants in ASD. Copy-number variants were analyzed in 5,657 patients and 19,163 controls, coding-sequence variants were ascertained in 760 to 2,147 patients and 492 to 1,090 controls (depending on the gene), and, individuals carrying de novo or truncating SHANK mutations underwent an extensive clinical investigation. Copy-number variants and truncating mutations in SHANK genes were present in ∼1% of patients with ASD: mutations in SHANK1 were rare (0.04%) and present in males with normal IQ and autism; mutations in SHANK2 were present in 0.17% of patients with ASD and mild intellectual disability; mutations in SHANK3 were present in 0.69% of patients with ASD and up to 2.12% of the cases with moderate to profound intellectual disability. In summary, mutations of the SHANK genes were detected in the whole spectrum of autism with a gradient of severity in cognitive impairment. Given the rare frequency of SHANK1 and SHANK2 deleterious mutations, the clinical relevance of these genes remains to be ascertained. In contrast, the frequency and the penetrance of SHANK3 mutations in individuals with ASD and intellectual disability-more than 1 in 50-warrant its consideration for mutation screening in clinical practice
The serotonin receptor 3E variant is a risk factor for female IBS-D
Irritable bowel syndrome (IBS) is a gut-brain disorder of multifactorial origin. Evidence of disturbed serotonergic function in IBS accumulated for the 5-HT receptor family. 5-HT Rs are encoded by HTR3 genes and control GI function, and peristalsis and secretion, in particular. Moreover, 5-HT R antagonists are beneficial in the treatment of diarrhea predominant IBS (IBS-D). We previously reported on functionally relevant SNPs in HTR3A c.-42C > T (rs1062613), HTR3C p.N163K (rs6766410), and HTR3E c.*76G > A (rs56109847 = rs62625044) being associated with IBS-D, and the HTR3B variant p.Y129S (rs1176744) was also described within the context of IBS. We performed a multi-center study to validate previous results and provide further evidence for the relevance of HTR3 genes in IBS pathogenesis. Therefore, genotype data of 2682 IBS patients and 9650 controls from 14 cohorts (Chile, Germany (2), Greece, Ireland, Spain, Sweden (2), the UK (3), and the USA (3)) were taken into account. Subsequent meta-analysis confirmed HTR3E c.*76G > A (rs56109847 = rs62625044) to be associated with female IBS-D (OR = 1.58; 95% CI (1.18, 2.12)). Complementary expression studies of four GI regions (jejunum, ileum, colon, sigmoid colon) of 66 IBS patients and 42 controls revealed only HTR3E to be robustly expressed. On top, HTR3E transcript levels were significantly reduced in the sigma of IBS patients (p = 0.0187); more specifically, in those diagnosed with IBS-D (p = 0.0145). In conclusion, meta-analysis confirmed rs56109847 = rs62625044 as a risk factor for female IBS-D. Expression analysis revealed reduced HTR3E levels in the sigmoid colon of IBS-D patients, which underlines the relevance of HTR3E in the pathogenesis of IBS-D. [Abstract copyright: © 2022. The Author(s).
The Jumping SHOX Gene—Crossover in the Pseudoautosomal Region Resulting in Unusual Inheritance of Leri-Weill Dyschondrosteosis
Context: During meiosis I, the recombination frequency in the pseudoautosomal region on Xp and Yp (PAR1) in males is very high. As a result, mutated genes located within the PAR1 region can be transferred from the Y-chromosome to the X-chromosome and vice versa. Patients: Here we describe three families with SHOX abnormalities resulting in Leri-Weill dyschondrosteosis or Langer mesomelic dysplasia. Results: In about half of the segregations investigated, a transfer of the SHOX abnormality to the alternate sex chromosome was demonstrated. Conclusions: Patients with an abnormality of the SHOX gene should receive genetic counseling as to the likelihood that they may transmit the mutation or deletion to a son as well as to a daughte