202 research outputs found

    Recognizing Interspersed sketches quickly

    Get PDF
    Sketch recognition is the automated recognition of hand-drawn diagrams. When allowing users to sketch as they would naturally, users may draw shapes in an interspersed manner, starting a second shape before finishing the first. In order to provide freedom to draw interspersed shapes, an exponential combination of subshapes must be considered. Because of this, most sketch recognition systems either choose not to handle interspersing, or handle only a limited pre-defined amount of interspersing. Our goal is to eliminate such interspersing drawing constraints from the sketcher. This paper presents a high-level recognition algorithm that, while still exponential, allows for complete interspersing freedom, running in near real-time through early effective sub-tree pruning. At the core of the algorithm is an indexing technique that takes advantage of geometric sketch recognition techniques to index each shape for efficient access and fast pruning during recognition. We have stresstested our algorithm to show that the system recognizes shapes in less than a second even with over a hundred candidate subshapes on screen.National Science Foundation (U.S.) (IIS Creative IT Grant #0757557

    Creating the Perception-based LADDER sketch recognition language

    Get PDF
    Sketch recognition is automated understanding of hand-drawn diagrams. Current sketch recognition systems exist for only a handful of domains, which contain on the order of 10--20 shapes. Our goal was to create a generalized method for recognition that could work for many domains, increasing the number of shapes that could be recognized in real-time, while maintaining a high accuracy. In an effort to effectively recognize shapes while allowing drawing freedom (both drawing-style freedom and perceptually-valid variations), we created the shape description language modeled after the way people naturally describe shapes to 1) create an intuitive and easy to understand description, providing transparency to the underlying recognition process, and 2) to improve recognition by providing recognition flexibility (drawing freedom) that is aligned with how humans perceive shapes. This paper describes the results of a study performed to see how users naturally describe shapes. A sample of 35 subjects described or drew approximately 16 shapes each. Results show a common vocabulary related to Gestalt grouping and singularities. Results also show that perception, similarity, and context play an important role in how people describe shapes. This study resulted in a language (LADDER) that allows shape recognizers for any domain to be automatically generated from a single hand-drawn example of each shape. Sketch systems for over 30 different domains have been automatically generated based on this language. The largest domain contained 923 distinct shapes, and achieved a recognition accuracy of 83% (and a top-3 accuracy of 87%) on a corpus of over 11,000 sketches, which recognizes almost two orders of magnitude more shapes than any other existing system.National Science Foundation (U.S.) (grant 0757557)National Science Foundation (U.S.) (grant 0943499

    The Relationship Between Locus of Control and Learner Self-Concept: A Construct Validity Study

    Get PDF
    Researchers tend to agree that self-concept has an influence on the total development of the child (Briggs, 1970). Stanton (1982) suggests that educators should find ways to encourage internality in students\u27 control orientations. Extensive research has been conducted on the constructs of locus of control and self-concept. Some research studies report interesting results concerning a dimension of self-concept--academic self-concept or self-concept as a learner--(Purkey, Raheim, & Cage, 1983; Purkey, 1970; Benner, Frey, & Gilberts, 1983). The purpose of this study was to explore the construct independence between locus of control and learner self-concept in students at the tenth grade level. A secondary purpose was to look at possible gender differences regarding the correlation of the constructs. The concerns were addressed by administering a measure of locus of control and a measure of learner self-concept to tenth grade students in two suburban high schools in Northeast Iowa. The measures were then scored and converted to normalized standard scores through a process of area transformation. Pearson-Product-Moment correlation coefficients were generated from the normalized data to determine the relationship between the constructs. The correlation coefficients were significant at the .001 level for total group, (r = -.4998), males, r = -.4725), and females, r = -.5215). An inverse relationship exists for total group, males and females between the constructs of locus of control and learner self-concept. This inverse relationship may suggest that individuals with a higher self-concept have a more internal control orientation, while individuals with a lower self-concept have an external control orientation. Further research on the constructs of locus of control and learner self-concept is warranted

    Recurrent radio outbursts at the center of the NGC1407 galaxy group

    Full text link
    We present deep Giant Metrewave Radio Telescope (GMRT) radio observations at 240, 330 and 610 MHz of the complex radio source at the center of the NGC1407 galaxy group. Previous GMRT observations at 240 MHz revealed faint, diffuse emission enclosing the central twin-jet radio galaxy. This has been interpreted as an indication of two possible radio outbursts occurring at different times. Both the inner double and diffuse component are detected in the new GMRT images at high levels of significance. Combining the GMRT observations with archival Very Large Array data at 1.4 and 4.9 GHz, we derive the total spectrum of both components. The inner double has a spectral index \alpha=0.7, typical for active, extended radio galaxies, whereas the spectrum of the large-scale emission is very steep, with \alpha=1.8 between 240 MHz and 1.4 GHz. The radiative age of the large-scale component is very long, ~300 Myr, compared to ~30 Myr estimated for the central double, confirming that the diffuse component was generated during a former cycle of activity of the central galaxy. The current activity have so far released an energy which is nearly one order of magnitude lower than that associated with the former outburst. The group X-ray emission in the Chandra and XMM-Newton images and extended radio emission show a similar swept-back morphology. We speculate that the two structures are both affected by the motion of the group core, perhaps due to the core sloshing in response to a recent encounter with the nearby elliptical galaxy NGC1400.Comment: 15 pages, 12 figures and 5 tables. Accepted for publication in Ap

    A combined low-radio frequency/X-ray study of galaxy groups I. Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz

    Full text link
    We present new Giant Metrewave Radio Telescope observations at 235 MHz and 610 MHz of 18 X-ray bright galaxy groups. These observations are part of an extended project, presented here and in future papers, which combines low-frequency radio and X-ray data to investigate the interaction between central active galactic nuclei (AGN) and the intra-group medium (IGM). The radio images show a very diverse population of group-central radio sources, varying widely in size, power, morphology and spectral index. Comparison of the radio images with Chandra and XMM-Newton X-ray images shows that groups with significant substructure in the X-ray band and marginal radio emission at >= 1 GHz host low-frequency radio structures that correlate with substructures in IGM. Radio-filled X-ray cavities, the most evident form of AGN/IGM interaction in our sample, are found in half of the systems, and are typically associated with small, low- or mid-power double radio sources. Two systems, NGC5044 and NGC4636, possess multiple cavities, which are isotropically distributed around the group center, possibly due to group weather. In other systems the radio/X-ray correlations are less evident. However, the AGN/IGM interaction can manifest itself through the effects of the high-pressure medium on the morphology, spectral properties and evolution of the radio-emitting plasma. In particular, the IGM can confine fading radio lobes in old/dying radio galaxies and prevent them from dissipating quickly. Evidence for radio emission produced by former outbursts that coexist with current activity is found in six groups of the sample.Comment: Accepted for publication in the Astrophysical Journal Supplement Series, 26 pages, 18 figures. A version with high-quality figures is http://www.astro.umd.edu/~simona/giacintucci_hr.pd

    Development, validation, and utilization of a competitive enzyme-linked immunosorbent assay for the detection of antibodies against Brucella species in marine mammals

    Get PDF
    A competitive enzyme-linked immunosorbent assay (cELISA) was developed by using a whole-cell antigen from a marine Brucella sp. isolated from a harbor seal (Phoca vitulina). The assay was designed to screen sera from multiple marine mammal species for the presence of antibodies against marine-origin Brucella. Based on comparisons with culture-confirmed cases, specificity and sensitivity for cetacean samples tested were 73% and 100%, respectively. For pinniped samples, specificity and sensitivity values were 77% and 67%, respectively. Hawaiian monk seal (Monachus schauinslandi; n = 28) and bottlenose dolphin (Tursiops truncatus; n = 48) serum samples were tested, and the results were compared with several other assays designed to detect Brucella abortus antibodies. The comparison testing revealed the marine-origin cELISA to be more sensitive than the B. abortus tests by the detection of additional positive serum samples. The newly developed cELISA is an effective serologic method for detection of the presence of antibodies against marine-origin Brucella sp. in marine mammals

    Development and validation of a multimodal neuroimaging biomarker for electroconvulsive therapy outcome in depression: A multicenter machine learning analysis

    Get PDF
    Background Electroconvulsive therapy (ECT) is the most effective intervention for patients with treatment resistant depression. A clinical decision support tool could guide patient selection to improve the overall response rate and avoid ineffective treatments with adverse effects. Initial small-scale, monocenter studies indicate that both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) biomarkers may predict ECT outcome, but it is not known whether those results can generalize to data from other centers. The objective of this study was to develop and validate neuroimaging biomarkers for ECT outcome in a multicenter setting. Methods Multimodal data (i.e. clinical, sMRI and resting-state fMRI) were collected from seven centers of the Global ECT-MRI Research Collaboration (GEMRIC). We used data from 189 depressed patients to evaluate which data modalities or combinations thereof could provide the best predictions for treatment remission (HAM-D score ⩽7) using a support vector machine classifier. Results Remission classification using a combination of gray matter volume and functional connectivity led to good performing models with average 0.82–0.83 area under the curve (AUC) when trained and tested on samples coming from the three largest centers (N = 109), and remained acceptable when validated using leave-one-site-out cross-validation (0.70–0.73 AUC). Conclusions These results show that multimodal neuroimaging data can be used to predict remission with ECT for individual patients across different treatment centers, despite significant variability in clinical characteristics across centers. Future development of a clinical decision support tool applying these biomarkers may be feasible.publishedVersio
    corecore