9 research outputs found
Ponding, draining and tilting of the Cerberus Plains; a cryolacustrine origin for the sinuous ridge and channel networks in Rahway Vallis, Mars
Rahway Vallis sits within a shallow basin (the “Rahway basin”) in the Cerberus Plains of Mars containing a branching network of channels converging on the basin floor. Using topographic cross-profiles of the channels we have found that they are set within broader, subtly-expressed, valleys. These valleys are shallow (around 15 m vertically compared to several kilometres in the horizontal) and have convex to rectilinear slope profiles that are consistent in form across the whole Rahway basin. Both channels and valleys descend and deepen consistently from west to east. The channels typically widen down-slope and increase in width at confluences. The morphology and topology of this channel system are consistent with formation by contributory fluid flow, generated from many distributed sources. The transition between the older heavily cratered terrain and the floor of the Rahway basin is bounded by near-horizontal continuous topographic terraces. Plotting the elevation of the terraces shows that they conform to a plane with a height difference of around 100 m east to west for the 300 km width of the Rahway basin. We calculate that the volume of material needed to fill the topography up to the level of the plane best fit by the terraces is ∼1500 km3. Bordering the channels are sinuous ridges, typically several kilometres long, 20 m across, with heights on the order of 10 m. They sometimes form branching networks leading into the channels, but also occur individually and parallel to the channels. The multiple tilted terraces, the channel/valley network with many fluvial-like characteristics, and the distributed source regions, suggest that the landforms within the Rahway basin are unlikely to have formed through purely volcanic processes. Rather, the channels within the Rahway basin are consistent with a genesis requiring the flow of liquid water, and the sinuous ridges with melting of a static ice body that occupied the basin. We suggest a hypothesis of rapid basin filling by fluvial flooding, followed by lake drainage. Drainage could have occurred as a consequence of an ice or debris-dam failure within (or during the formation of) the large, nearby fluvial flood channel Marte Vallis. If the lake was partly or largely frozen prior to drainage, this offers a possible explanation for the sinuous ridge systems. Hence, although the sinuous ridges provide some of the most compelling morphological analogues of terrestrial eskers yet observed, we conclude that the contextual evidence for this interpretation in Rahway Vallis is not strong, and instead they are better explained in the context of a frozen or partially frozen lake or cryolacustrine model
Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas
The increased volume, spatial resolution, and areal coverage of high-resolution images of Mars over the past 15 years have led to an increased quantity and variety of small-scale landform identifications. Though many such landforms are too small to represent individually on regional-scale maps, determining their presence or absence across large areas helps form the observational basis for developing hypotheses on the geological nature and environmental history of a study area. The combination of improved spatial resolution and near-continuous coverage significantly increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre and decametre-scale landforms. Here, we describe an approach for mapping small features (from decimetre to kilometre scale) across large areas, formulated for a project to study the northern plains of Mars, and provide context on how this method was developed and how it can be implemented. Rather than “mapping” with points and polygons, grid-based mapping uses a “tick box” approach to efficiently record the locations of specific landforms (we use an example suite of glacial landforms; including viscous flow features, the latitude dependant mantle and polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping area. Then the basemap data are systematically examined, grid-square by grid-square at full resolution, in order to identify the landforms while recording the presence or absence of selected landforms in each grid-square to determine spatial distributions. The result is a series of grids recording the distribution of all the mapped landforms across the study area. In some ways, these are equivalent to raster images, as they show a continuous distribution-field of the various landforms across a defined (rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital landform map. We find that grid-based mapping provides an efficient solution to the problems of mapping small landforms over large areas, by providing a consistent and standardised approach to spatial data collection. The simplicity of the grid-based mapping approach makes it extremely scalable and workable for group efforts, requiring minimal user experience and producing consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing large grid-based mapping areas could be applied
Glifosato aplicado com diferentes concentrações de uréia ou sulfato de amônio para dessecação de plantas daninhas Glyphosate applied with different concentrations of urea or ammonium sulfate for weed desiccation
Este trabalho foi desenvolvido com o objetivo de avaliar a eficácia do herbicida glifosato, para a dessecação de trapoeraba (Commelina benghalensis) e outras plantas daninhas, quando combinado a diferentes concentrações de sulfato de amônio ou uréia. Foram conduzidos três experimentos com tratamentos semelhantes: dois em campo e um em casa de vegetação. Os tratamentos aplicados em campo foram: glifosato (360 g ha-1 de e.a.), isolado ou acrescido de quatro concentrações de sulfato de amônio (2,5, 5, 10 e 20 g L-1) ou uréia (1,5, 3, 6 e 12 g L-1); glifosato a 720 g ha-1 de e.a., aplicado isoladamente; e testemunha sem aplicação. Em casa de vegetação, para o controle específico da trapoeraba, as doses de glifosato foram elevadas para 720 (isolado e nas combinações) e 1.440 g ha-1 de e.a. A adição de sulfato de amônio à calda do glifosato elevou o controle das plantas daninhas em campo, para as concentrações com até 10 g L-1. O herbicida glifosato não foi eficaz no controle da trapoeraba, em nenhumas das doses usadas. A adição de uréia não promoveu incrementos de controle em condição de campo; porém, para concentrações de até 6 g L-1, melhorou o controle da trapoeraba, na avaliação conduzida aos 28 dias após aplicação.<br>This work was developed with the objective of evaluating glyphosate efficacy for Bengal dayflower (Commelina benghalensis) and other weeds desiccation, when combined to different concentrations of ammonium sulfate or urea. Three experiments were carried out with similar treatments: two in field conditions and one in greenhouse. Treatments applied in field conditions were: glyphosate at 360 g ha-1 a.e., isolated or combined to four concentrations of ammonium sulfate (2.5, 5, 10, and 20 g L-1) or urea (1.5, 3, 6, and 12 g L-1); glyphosate at 720 g ha-1 a.e., applied isolately; and checks without application. In greenhouse, for the specific control on Bengal dayflower, glyphosate rates were increased to 720 (isolated or in combination) and to 1,440 g ha-1 a.e. Ammonium sulfate addition to glyphosate spray solution increased field weed control, when concentrations up to 10 g L-1 were used. None of the glyphosate rates were efficient to control Bengal dayflower. Urea addition to spray solution did not improve weed control in field conditions; however, it increased Bengal dayflower control for concentrations up to 6 g L-1, at the evaluation after 28 days of application
Validation of the OAKS prognostic model for acute kidney injury after gastrointestinal surgery
Background Postoperative acute kidney injury (AKI) is a common complication of major gastrointestinal surgery with an impact on short- and long-term survival. No validated system for risk stratification exists for this patient group. This study aimed to validate externally a prognostic model for AKI after major gastrointestinal surgery in two multicentre cohort studies.Methods The Outcomes After Kidney injury in Surgery (OAKS) prognostic model was developed to predict risk of AKI in the 7 days after surgery using six routine datapoints (age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker). Validation was performed within two independent cohorts: a prospective multicentre, international study ('IMAGINE') of patients undergoing elective colorectal surgery (2018); and a retrospective regional cohort study ('Tayside') in major abdominal surgery (2011-2015). Multivariable logistic regression was used to predict risk of AKI, with multiple imputation used to account for data missing at random. Prognostic accuracy was assessed for patients at high risk (greater than 20 per cent) of postoperative AKI.Results In the validation cohorts, 12.9 per cent of patients (661 of 5106) in IMAGINE and 14.7 per cent (106 of 719 patients) in Tayside developed 7-day postoperative AKI. Using the OAKS model, 558 patients (9.6 per cent) were classified as high risk. Less than 10 per cent of patients classified as low-risk developed AKI in either cohort (negative predictive value greater than 0.9). Upon external validation, the OAKS model retained an area under the receiver operating characteristic (AUC) curve of range 0.655-0.681 (Tayside 95 per cent c.i. 0.596 to 0.714; IMAGINE 95 per cent c.i. 0.659 to 0.703), sensitivity values range 0.323-0.352 (IMAGINE 95 per cent c.i. 0.281 to 0.368; Tayside 95 per cent c.i. 0.253 to 0.461), and specificity range 0.881-0.890 (Tayside 95 per cent c.i. 0.853 to 0.905; IMAGINE 95 per cent c.i. 0.881 to 0.899).Conclusion The OAKS prognostic model can identify patients who are not at high risk of postoperative AKI after gastrointestinal surgery with high specificity.Presented to Association of Surgeons in Training (ASiT) International Conference 2018 (Edinburgh, UK), European Society of Coloproctology (ESCP) International Conference 2018 (Nice, France), SARS (Society of Academic and Research Surgery) 2020 (Virtual, UK).Nephrolog