10 research outputs found

    Diseño de vigas reforzadas con fibra de vidrio y basalto, para mejorar la resistencia del domicilio unifamiliar, Juan Pablo - 2022

    Get PDF
    La presente tesis titulada: Diseño De Vigas Reforzadas Con Fibra De Vidrio Y Basalto, Para Mejorar La Resistencia del Domicilio Unifamiliar, Juan Pablo, 2022. La actual investigación tiene como objetivo determinar como el diseño de vigas va mejorar la resistencia, añadiendo las fibras de vidrio y basalto. Se determino el comportamiento estructural de 3 vigas de concreto, la primera viga convencional y las dos siguientes vigas añadiendo las fibras de vidrio y basalto con los porcentajes del 2% y 4% respectivamente. La investigación se efectua con la finalidad de comprobar mediante el laboratorio, que la viga aumente la resistencia, añadiendo las fibras de vidrio y basalto, también con los porcentajes del 2% y 4%. La investigación es de tipo experimental en la cual se busca, comprobar el aumento de la resistencia (compresión y flexión), de las 3 muestras de viga, tanto la viga convencional, como las dos vigas reforzadas con fibra de vidrio y basalto, para poder llegar a una conclusión más certera del buen o mal funcionamiento de las fibras de vidrio y basalto. Entre los resultados de la compresión y flexión a la resistencia del concreto de las 3 vigas durante el periodo de 7, 14 y 28 días, se pudo obtener un mejoramiento a la resistencia de las vigas de acuerdo a los ensayos realizados en el laboratorio

    The hitchhiker's guide to the voltage-gated sodium channel galaxy

    No full text
    Eukaryotic voltage-gated sodium (Na-v) channels contribute to the rising phase of action potentials and served as an early muse for biophysicists laying the foundation for our current understanding of electrical signaling. Given their central role in electrical excitability, it is not surprising that (a) inherited mutations in genes encoding for Na-v channels and their accessory subunits have been linked to excitability disorders in brain, muscle, and heart; and (b) Na-v channels are targeted by various drugs and naturally occurring toxins. Although the overall architecture and behavior of these channels are likely to be similar to the more well-studied voltage-gated potassium channels, eukaryotic Na-v channels lack structural and functional symmetry, a notable difference that has implications for gating and selectivity. Activation of voltage-sensing modules of the first three domains in Na-v channels is sufficient to open the channel pore, whereas movement of the domain IV voltage sensor is correlated with inactivation. Also, structure-function studies of eukaryotic Na-v channels show that a set of amino acids in the selectivity filter, referred to as DEKA locus, is essential for Na+ selectivity. Structures of prokaryotic Na-v channels have also shed new light on mechanisms of drug block. These structures exhibit lateral fenestrations that are large enough to allow drugs or lipophilic molecules to gain access into the inner vestibule, suggesting that this might be the passage for drug entry into a closed channel. In this Review, we will synthesize our current understanding of Na-v channel gating mechanisms, ion selectivity and permeation, and modulation by therapeutics and toxins in light of the new structures of the prokaryotic Nav channels that, for the time being, serve as structural models of their eukaryotic counterparts

    The hitchhiker’s guide to the voltage-gated sodium channel galaxy

    No full text
    corecore