121 research outputs found

    Aplicação de uma métrica de similaridade não linear em algoritmos de segmentação

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, 2015.Um dos principais processos utilizados no campo de processamento digital de imagens é a segmentação, processo no qual a imagem é separada em seus elementos ou partes constituintes. Na literatura, existem diferentes e bem conhecidos métodos usados para segmentação, tais como clusterização, limiarização, segmentação com redes neurais e segmentação por crescimento de regiões . No intuito de melhorar de melhorar o desempenho dos algoritmos de segmentação, um estudo sobre o efeito da aplicação de uma métrica não linear em algoritmos de segmentação foi realizado neste trabalho. Foram selecionados três algoritmos de segmentação (Mumford-Shah, Color Structure Code e Felzenszwalb and Huttenlocher) provenientes do método de crescimento de regiões e nestes se alterou a parte de análise de similaridade utilizando para tal uma métrica não linear. A métrica não linear utilizada, denominada Polinomial Mahalanobis, é uma variação da distância de Mahalanobis utilizada para medir a distância estatística entre distribuições. Uma avaliação qualitativa e uma análise empírica foram realizadas neste trabalho para comparar os resultados obtidos em termos de eficácia. Os resultados desta comparação, apresentados neste estudo, apontam uma melhoria nos resultados de segmentação obtidos pela abordagem proposta. Em termos de eficiência, foram analisados os tempos de execução dos algoritmos com e sem o aprimoramento e os resultados desta análise mostraram um aumento do tempo de execução dos algoritmos com abordagem proposta.Abstract : One of the main procedures used on digital image processing is segmentation,where the image is split into its constituent parts or objects. In the literature,there are different well-known methods used for segmentation, suchas clustering, thresholding, segmentation using neural network and segmentationusing region growing. Aiming to improve the performance of the segmentationalgorithms, a study off the effect of the application of a non-linearmetric on segmentation algorithms was performed in this work. Three segmentationalgorithms were chosen (Mumford-Shah, Color Structure Code,Felzenszwalb and Huttenlocher) originating from region growing techniques,and on those the similarity metric was enhanced with a non-linear metric.The non-linear metric used, known as Polynomial Mahalanobis, is a variationfrom the statistical Mahalanobis distance used for measure the distancebetween distributions. A qualitative evaluation and empirical analysis wasperformed in this work to compare the obtained results in terms of efficacy.The results from these comparison, presented in this study, indicate an improvementon the segmentation result obtained by the proposed approach. Interms of efficiency, the execution time of the algorithms with and without theproposed improvement were analyzed and the result of this analysis showedan increase of the execution time for the algorithms with the proposed approach

    Can the Use of nonlinear Color Metrics systematically improve Segmentation?

    Get PDF
    Image segmentation is a procedure where an image is split into its constituent parts, according to some criterion. In the literature, there are different well-known approaches for segmentation, such as clustering, thresholding, graph theory and region growing. Such approaches, additionally, can be combined with color distance metrics, playing an important role for color similarity computation. Aiming to investigate general approaches able to enhance the performance of segmentation methods, this work presents an empirical study of the effect of a nonlinear color metric on segmentation procedures. For this purpose, three algorithms were  chosen: Mumford-Shah, Color Structure Code and Felzenszwalb and Huttenlocher Segmentation. The color similarity metric employed by these algorithms (L2-norm) was replaced by the Polynomial Mahalanobis Distance. This metric is an extension of the statistical Mahalanobis Distance used to measure the distance between coordinates and distribution centers. An evaluation based upon automated comparison of segmentation results against ground truths from the Berkeley Dataset was performed. All three segmentation approaches were compared to their traditional implementations, against each other and also to a large set of other segmentation methods. The statistical analysis performed has indicated a systematic improvement of segmentation results for all three segmentation approaches when the nonlinear metric was employed

    Thrombus aspiration in patients with ST-elevation myocardial infarction: results of a national registry of interventional cardiology

    Get PDF
    BACKGROUND: We aimed to evaluate the impact of thrombus aspiration (TA) during primary percutaneous coronary intervention (P-PCI) in 'real-world' settings. METHODS: We performed a retrospective study, using data from the National Registry of Interventional Cardiology (RNCI 2006-2012, Portugal) with ST-elevation myocardial infarction (STEMI) patients treated with P-PCI. The primary outcome, in-hospital mortality, was analysed through adjusted odds ratio (aOR) and 95% confidence intervals (95%CI). RESULTS: We assessed data for 9458 STEMI patients that undergone P-PCI (35% treated with TA). The risk of in-hospital mortality with TA (aOR 0.93, 95%CI:0.54-1.60) was not significantly decreased. After matching patients through the propensity score, TA reduced significantly the risk of in-hospital mortality (OR 0.58, 95%CI:0.35-0.98; 3500 patients). CONCLUSIONS: The whole cohort data does not support the routine use of TA in P-PCI, but the results of the propensity-score matched cohort suggests that the use of selective TA may improve the short-term risks of STEMI..info:eu-repo/semantics/publishedVersio

    COVID-19 outcomes in people living with HIV: Peering through the waves

    Get PDF
    Objective: To evaluate clinical characteristics and outcomes of COVID-19 patients infected with HIV, and to compare with a paired sample without HIV infection. Methods: This is a substudy of a Brazilian multicentric cohort that comprised two periods (2020 and 2021). Data was obtained through the retrospective review of medical records. Primary outcomes were admission to the intensive care unit, invasive mechanical ventilation, and death. Patients with HIV and controls were matched for age, sex, number of comorbidities, and hospital of origin using the technique of propensity score matching (up to 4:1). They were compared using the Chi-Square or Fisher's Exact tests for categorical variables and the Wilcoxon for numerical variables. Results: Throughout the study, 17,101 COVID-19 patients were hospitalized, and 130 (0.76%) of those were infected with HIV. The median age was 54 (IQR: 43.0;64.0) years in 2020 and 53 (IQR: 46.0;63.5) years in 2021, with a predominance of females in both periods. People Living with HIV (PLHIV) and their controls showed similar prevalence for admission to the ICU and invasive mechanical ventilation requirement in the two periods, with no significant differences. In 2020, in-hospital mortality was higher in the PLHIV compared to the controls (27.9% vs. 17.7%; p = 0.049), but there was no difference in mortality between groups in 2021 (25.0% vs. 25.1%; p > 0.999). Conclusions: Our results reiterate that PLHIV were at higher risk of COVID-19 mortality in the early stages of the pandemic, however, this finding did not sustain in 2021, when the mortality rate is similar to the control group

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    Aim: Amazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types. Location: Amazonia. Taxon: Angiosperms (Magnoliids; Monocots; Eudicots). Methods: Data for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran\u27s eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny. Results: In the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2^{2} = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2^{2} = 28%). A greater number of lineages were significant indicators of geographic regions than forest types. Main Conclusion: Numerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions

    Geographic patterns of tree dispersal modes in Amazonia and their ecological correlates

    Get PDF
    Aim: To investigate the geographic patterns and ecological correlates in the geographic distribution of the most common tree dispersal modes in Amazonia (endozoochory, synzoochory, anemochory and hydrochory). We examined if the proportional abundance of these dispersal modes could be explained by the availability of dispersal agents (disperser-availability hypothesis) and/or the availability of resources for constructing zoochorous fruits (resource-availability hypothesis). Time period: Tree-inventory plots established between 1934 and 2019. Major taxa studied: Trees with a diameter at breast height (DBH) ≥ 9.55 cm. Location: Amazonia, here defined as the lowland rain forests of the Amazon River basin and the Guiana Shield. Methods: We assigned dispersal modes to a total of 5433 species and morphospecies within 1877 tree-inventory plots across terra-firme, seasonally flooded, and permanently flooded forests. We investigated geographic patterns in the proportional abundance of dispersal modes. We performed an abundance-weighted mean pairwise distance (MPD) test and fit generalized linear models (GLMs) to explain the geographic distribution of dispersal modes. Results: Anemochory was significantly, positively associated with mean annual wind speed, and hydrochory was significantly higher in flooded forests. Dispersal modes did not consistently show significant associations with the availability of resources for constructing zoochorous fruits. A lower dissimilarity in dispersal modes, resulting from a higher dominance of endozoochory, occurred in terra-firme forests (excluding podzols) compared to flooded forests. Main conclusions: The disperser-availability hypothesis was well supported for abiotic dispersal modes (anemochory and hydrochory). The availability of resources for constructing zoochorous fruits seems an unlikely explanation for the distribution of dispersal modes in Amazonia. The association between frugivores and the proportional abundance of zoochory requires further research, as tree recruitment not only depends on dispersal vectors but also on conditions that favour or limit seedling recruitment across forest types

    Geography and ecology shape the phylogenetic composition of Amazonian tree communities

    Get PDF
    AimAmazonia hosts more tree species from numerous evolutionary lineages, both young and ancient, than any other biogeographic region. Previous studies have shown that tree lineages colonized multiple edaphic environments and dispersed widely across Amazonia, leading to a hypothesis, which we test, that lineages should not be strongly associated with either geographic regions or edaphic forest types.LocationAmazonia.TaxonAngiosperms (Magnoliids; Monocots; Eudicots).MethodsData for the abundance of 5082 tree species in 1989 plots were combined with a mega-phylogeny. We applied evolutionary ordination to assess how phylogenetic composition varies across Amazonia. We used variation partitioning and Moran's eigenvector maps (MEM) to test and quantify the separate and joint contributions of spatial and environmental variables to explain the phylogenetic composition of plots. We tested the indicator value of lineages for geographic regions and edaphic forest types and mapped associations onto the phylogeny.ResultsIn the terra firme and várzea forest types, the phylogenetic composition varies by geographic region, but the igapó and white-sand forest types retain a unique evolutionary signature regardless of region. Overall, we find that soil chemistry, climate and topography explain 24% of the variation in phylogenetic composition, with 79% of that variation being spatially structured (R2 = 19% overall for combined spatial/environmental effects). The phylogenetic composition also shows substantial spatial patterns not related to the environmental variables we quantified (R2 = 28%). A greater number of lineages were significant indicators of geographic regions than forest types.Main ConclusionNumerous tree lineages, including some ancient ones (>66 Ma), show strong associations with geographic regions and edaphic forest types of Amazonia. This shows that specialization in specific edaphic environments has played a long-standing role in the evolutionary assembly of Amazonian forests. Furthermore, many lineages, even those that have dispersed across Amazonia, dominate within a specific region, likely because of phylogenetically conserved niches for environmental conditions that are prevalent within regions
    corecore