10 research outputs found

    Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex

    No full text
    Recent work has demonstrated that some actively transcribed genes closely associate with nuclear pore complexes (NPC) at the nuclear periphery. The Saccharomyces cerevisiae Mlp1 and Mlp2 proteins are components of the inner nuclear basket of the nuclear pore that mediate interactions with these active genes. To investigate the physical link between the NPC and active loci, we identified proteins that interact with the carboxyl-terminal globular domain of Mlp1 by tandem affinity purification coupled with mass spectrometry. This analysis led to the identification of several components of the Spt-Ada-Gcn5-acetyltransferase ( SAGA) histone acetyltransferase complex, Gcn5, Ada2, and Spt7. We utilized co-immunoprecipitation and in vitro binding assays to confirm the interaction between the Mlp proteins and SAGA components. Chromatin immunoprecipitation experiments revealed that Mlp1 and SAGA components associate with the same region of the GAL promoters. Critically, this Mlp-promoter interaction depends on the integrity of the SAGA complex. These results identify a physical association between SAGA and the NPC, and support previous results that relied upon visualization of GAL loci at the nuclear periphery by microscopy ( Cabal, G. G. Genovesio, A., Rodriguez-Navarro, S., Zimmer, C., Gadal, O., Lesne, A., Buc, H., Feuerbach- Fournier, F., Olivo-Marin, J.-C., Hurt, E. C., and Nehrbass, U. ( 2006) Nature 441, 770-773). We propose that a physical interaction between nuclear pore components and the SAGA complex can link the actively transcribed GAL genes to the nuclear pore

    RGS14 regulates PTH- and FGF23-sensitive NPT2A-mediated renal phosphate uptake via binding to the NHERF1 scaffolding protein.

    No full text
    Phosphate homeostasis, mediated by dietary intake, renal absorption, and bone deposition, is incompletely understood because of the uncharacterized roles of numerous implicated protein factors. Here, we identified a novel role for one such element, regulator of G protein signaling 14 (RGS14), suggested by genome-wide association studies to associate with dysregulated Pi levels. We show that human RGS14 possesses a carboxy-terminal PDZ ligand required for sodium phosphate cotransporter 2a (NPT2A) and sodium hydrogen exchanger regulatory factor-1 (NHERF1)-mediated renal Pi transport. In addition, we found using isotope uptake measurements combined with bioluminescence resonance energy transfer assays, siRNA knockdown, pull-down and overlay assays, and molecular modeling that secreted proteins parathyroid hormone (PTH) and fibroblast growth factor 23 inhibited Pi uptake by inducing dissociation of the NPT2A-NHERF1 complex. PTH failed to affect Pi transport in cells expressing RGS14, suggesting that it suppresses hormone-sensitive but not basal Pi uptake. Interestingly, RGS14 did not affect PTH-directed G protein activation or cAMP formation, implying a postreceptor site of action. Further pull-down experiments and direct binding assays indicated that NPT2A and RGS14 bind distinct PDZ domains on NHERF1. We showed that RGS14 expression in human renal proximal tubule epithelial cells blocked the effects of PTH and fibroblast growth factor 23 and stabilized the NPT2A-NHERF1 complex. In contrast, RGS14 genetic variants bearing mutations in the PDZ ligand disrupted RGS14 binding to NHERF1 and subsequent PTH-sensitive Pi transport. In conclusion, these findings identify RGS14 as a novel regulator of hormone-sensitive Pi transport. The results suggest that changes in RGS14 function or abundance may contribute to the hormone resistance and hyperphosphatemia observed in kidney diseases
    corecore