9 research outputs found

    Mapping forest cover and forest cover change with airborne S-band radar

    Get PDF
    Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR) sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI) are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41) and 20 m (63% overall accuracy, κ = 0.27). The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its change

    Relationships of S-Band Radar Backscatter and Forest Aboveground Biomass in Different Forest Types

    Get PDF
    Synthetic Aperture Radar (SAR) signals respond to the interactions of microwaves with vegetation canopy scatterers that collectively characterise forest structure. The sensitivity of S-band (7.5–15 cm) backscatter to the different forest types (broadleaved, needleleaved) with varying aboveground biomass (AGB) across temperate (mixed, needleleaved) and tropical (broadleaved, woody savanna, secondary) forests is less well understood. In this study, Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model simulations showed strong volume scattering returns from S-band SAR for broadleaved canopies caused by ground/trunk interactions. A general relationship between AirSAR S-band measurements and MIMICS-I simulated radar backscatter with forest AGB up to nearly 100 t/ha in broadleaved forest in the UK was found. Simulated S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest biomass with a saturation level close to 100 t/ha and errors between 37 t/ha and 44 t/ha for HV and VV polarisations for tropical ecosystems. In the near future, satellite SAR-derived forest biomass from P-band BIOMASS mission and L-band ALOS-2 PALSAR-2 in combination with S-band UK NovaSAR-S and the joint NASA-ISRO NISAR sensors will provide better quantification of large-scale forest AGB at varying sensitivity levels across primary and secondary forests and woody savannas

    Understanding and modelling wildfire regimes: An ecological perspective

    Get PDF
    © 2021 The Author(s).Recent extreme wildfire seasons in several regions have been associated with exceptionally hot, dry conditions, made more probable by climate change. Much research has focused on extreme fire weather and its drivers, but natural wildfire regimes—and their interactions with human activities—are far from being comprehensively understood. There is a lack of clarity about the 'causes' of wildfire, and about how ecosystems could be managed for the co-existence of wildfire and people. We present evidence supporting an ecosystem-centred framework for improved understanding and modelling of wildfire. Wildfire has a long geological history and is a pervasive natural process in contemporary plant communities. In some biomes, wildfire would be more frequent without human settlement; in others they would be unchanged or less frequent. A world without fire would have greater forest cover, especially in present-day savannas. Many species would be missing, because fire regimes have co-evolved with plant traits that resist, adapt to or promote wildfire. Certain plant traits are favoured by different fire frequencies, and may be missing in ecosystems that are normally fire-free. For example, post-fire resprouting is more common among woody plants in high-frequency fire regimes than where fire is infrequent. The impact of habitat fragmentation on wildfire crucially depends on whether the ecosystem is fire-adapted. In normally fire-free ecosystems, fragmentation facilitates wildfire starts and is detrimental to biodiversity. In fire-adapted ecosystems, fragmentation inhibits fires from spreading and fire suppression is detrimental to biodiversity. This interpretation explains observed, counterintuitive patterns of spatial correlation between wildfire and potential ignition sources. Lightning correlates positively with burnt area only in open ecosystems with frequent fire. Human population correlates positively with burnt area only in densely forested regions. Models for vegetation-fire interactions must be informed by insights from fire ecology to make credible future projections in a changing climate.We gratefully acknowledge support from the Leverhulme Centre for Wildfires, Environment and Society, who organized the virtual mini-workshop which initiated the writing of this paper. RKN is supported by the Leverhulme Centre. SPH and YS acknowledge support from the ERC-funded project GC2.0 (Global Change 2.0: Unlocking the past for a clearer future, Grant Number 694481). ICP, KJB and ND acknowledge support from the ERC-funded project REALM (Re-inventing Ecosystem And Land-surface Models, Grant Number 787203). JCH acknowledges funding from the ERC project SCATAPNUT (Grant Number 681885). This work is a contribution to the LEMONTREE (Land Ecosystem Models based On New Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program (SPH, YS and ICP)

    Airborne S-Band SAR for forest biophysical retrieval in temperate mixed forests of the UK

    Get PDF
    Radar backscatter from forest canopies is related to forest cover, canopy structure and aboveground biomass (AGB). The S-band frequency (3.1–3.3 GHz) lies between the longer L-band (1–2 GHz) and the shorter C-band (5–6 GHz) and has been insufficiently studied for forest applications due to limited data availability. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest biophysical properties. To understand the scattering mechanisms in forest canopies at S-band the Michigan Microwave Canopy Scattering (MIMICS-I) radiative transfer model was used. S-band backscatter was found to have high sensitivity to the forest canopy characteristics across all polarisations and incidence angles. This sensitivity originates from ground/trunk interaction as the dominant scattering mechanism related to broadleaved species for co-polarised mode and specific incidence angles. The study was carried out in the temperate mixed forest at Savernake Forest and Wytham Woods in southern England, where airborne S-band SAR imagery and field data are available from the recent AirSAR campaign. Field data from the test sites revealed wide ranges of forest parameters, including average canopy height (6–23 m), diameter at breast-height (7–42 cm), basal area (0.2–56 m2/ha), stem density (20–350 trees/ha) and woody biomass density (31–520 t/ha). S-band backscatter-biomass relationships suggest increasing backscatter sensitivity to forest AGB with least error between 90.63 and 99.39 t/ha and coefficient of determination (r2) between 0.42 and 0.47 for the co-polarised channel at 0.25 ha resolution. The conclusion is that S-band SAR data such as from NovaSAR-S is suitable for monitoring forest aboveground biomass less than 100 t/ha at 25 m resolution in low to medium incidence angle rang

    Retrieving Forest Characteristics from High-Resolution Airborne S-Band Radar Data

    Full text link
    Synthetic Aperture Radar (SAR) data are utilized for improved mapping of forest cover and biophysical retrieval due to its sensitivity to forest canopy and structure. It is important to study the forest structure and biophysical parameters because it constitutes the major forest aboveground biomass (AGB). The S-band SAR frequency has not been consistently investigated for forest monitoring due to the lack of long-term data. Using the recent AirSAR campaign (2010-2014) over Savernake Forest and Wytham Woods in southern England, this thesis presents methods for analysing S-band SAR data for soil and forest canopies using the radiative transfer Michigan Microwave Canopy Scattering (MIMICS-I) model. The first result chapter shows that dominant scattering behaviour of S-band frequency arises from ground/trunk interactions with little direct crown scattering across all polarisations and incidence angles. The S-band backscatter shows significant sensitivity to both soil moisture content and surface roughness. Simulation experiments related to forest degradation show low co-polarisation backscatter due to reduced canopy component and tree density at S-band. Using the above information, the second result chapter shows that S-band HH- and VV-backscatter and Radar Forest Degradation Index (RFDI) data produces forest/non-forest classification map at 6 m resolution with 70% overall accuracy (kappa coefficient, κ = 0.41) while 63% overall accuracy (kappa coefficient, κ = 0.27) for the 20 m resolution map in a Maximum Likelihood algorithm. S-band data is also useful for mapping various non-forest cover types and monitoring forest cover changes over time due to the loss of volume scattering when forest canopies are removed. Using the field measured forest biomass, the third result chapter reveals that S-band radar backscatter correlates well with forest AGB. A consistent S-band backscatter/ biomass relationship is found, suggesting increasing backscatter sensitivity to forest AGB up to 100 t/ha with least error varying 90.46 - 98.65 t/ha at 25 m resolution (stand level) in low to medium incidence angles. The implications of these results are that S-band SAR data like the longer L-band SAR is highly suitable for mapping forest cover and monitoring cover changes and be able to retrieve low biomass stands below 100 t/ha
    corecore