892 research outputs found

    Effects of quarry blasting towards the residential area at Kangkar Pulai, Johor, Malaysia

    Get PDF
    The drill and blast technique have been widely used recently due to demand for natural building materials like rock aggregates. However, the intensity of blasting effects has been questioned on its validity towards the nearby residential areas. In this study, the blasting effects from Quarry A and B has been assessed based on constant location of the residential areas (Taman Pulai Hijauan and Taman Bandar Baru Kangkar Pulai, respectively) using the empirical formulations only. The blasting effects are highly dependent on the maximum instantaneous charge in blast holes (Q) which are dependent on parameters like number of blast holes, charge per column, Powder Factor and number of blast per delay. This study was able to show that with an increase of the independent variables, the Q value rises significantly. The average Q value from Quarry A (181.07 kg) was slightly higher than Quarry B (180.22 kg). The correlations made for each quarry showed that Quarry A had a better regression line with lower standard error due to the high number of blast data obtained during the monitoring period of about 1 year and 8 months. Meanwhile, the impact assessments showed higher PPV (Peak Particle Velocity) value at higher Q holding blast holes in Quarry A compared to Quarry B and decreases with increasing distance. The similar relationship was observed for the air blast assessments. Yet, all of the blasts produced are relatively within safe limits which are less than 5 mm/s Mineral & Geosciences Department (JMG) and less than 125 dBL United States Bureau of Mining (USBM). Thus, extra precaution can be taken by estimating the suitable Q value such as A (97.66 kg) and B (271.68 to 495.01 kg) to maintain safe blasting operations and prevent damages to the nearby residential areas

    Disentangling source of moisture driving glacier dynamics and identification of 8.2 ka event: evidence from pore water isotopes, Western Himalaya

    Get PDF
    Two atmospheric circulation patterns, the Indian Summer Monsoon (ISM) and mid-latitude Westerlies control precipitation and thus glacier variability in the Himalaya. However, the role of the ISM and westerlies in controlling climate and thus past glacier variability in the Himalaya is poorly understood because of the paucity of the ice core records. In this article, we present a new Holocene paleorecord disentangling the presence of the ISM and mid-latitude westerlies and their effect on glacier fluctuations during the Holocene. Our new record is based on high-resolution multi-proxy analyses (δ18Oporewater, deuterium-excess, grain size analysis, permeability, and environmental magnetism) of lake sediments retrieved from Chandratal Lake, Western Himalaya. Our study provides new evidence that improves the current understanding of the forcing factor behind glacier advances and retreat in the Western Himalaya and identifies the 8.2 ka cold event using the aforementioned proxies. The results indicate that the ISM dominated precipitation ~ 21% of the time, whereas the mid-latitude westerlies dominated precipitation ~ 79% of the time during the last 11 ka cal BP. This is the first study that portrays the moisture sources by using the above proxies from the Himalayan region as an alternative of ice core records.publishedVersio

    Effects of quarry blasting towards the residential area at Kangkar Pulai, Johor, Malaysia

    Get PDF
    The drill and blast technique have been widely used recently due to demand for natural building materials like rock aggregates. However, the intensity of blasting effects has been questioned on its validity towards the nearby residential areas. In this study, the blasting effects from Quarry A and B has been assessed based on constant location of the residential areas (Taman Pulai Hijauan and Taman Bandar Baru Kangkar Pulai, respectively) using the empirical formulations only. The blasting effects are highly dependent on the maximum instantaneous charge in blast holes (Q) which are dependent on parameters like number of blast holes, charge per column, Powder Factor and number of blast per delay. This study was able to show that with an increase of the independent variables, the Q value rises significantly. The average Q value from Quarry A (181.07 kg) was slightly higher than Quarry B (180.22 kg). The correlations made for each quarry showed that Quarry A had a better regression line with lower standard error due to the high number of blast data obtained during the monitoring period of about 1 year and 8 months. Meanwhile, the impact assessments showed higher PPV (Peak Particle Velocity) value at higher Q holding blast holes in Quarry A compared to Quarry B and decreases with increasing distance. The similar relationship was observed for the air blast assessments. Yet, all of the blasts produced are relatively within safe limits which are less than 5 mm/s Mineral & Geosciences Department (JMG) and less than 125 dBL United States Bureau of Mining (USBM). Thus, extra precaution can be taken by estimating the suitable Q value such as A (97.66 kg) and B (271.68 to 495.01 kg) to maintain safe blasting operations and prevent damages to the nearby residential areas

    Hysteresis in a quantized, superfluid atomtronic circuit

    Full text link
    Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).Comment: 20 pages, 4 figure

    Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl

    Full text link
    The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products.The authors wish to thank the EUPHORE staff and J.T.B. The authors wish to acknowledge Ministerio de Economia y Competitividad for IMPLACAVELES (CGL2013-49093-C2-1-R) and IMPESTAT (CGL2010-18474/CLI) projects, and Generalitat Valenciana for the DESESTRES- Prometeo II project. The Fundacion CEAM is partly supported by Generalitat Valenciana - Spain. EUPHORE instrumentation is partly funded by MINECO - Spain, through INNPLANTA Project: PCT-440000-2010-003 and the projects FEDER CEAM10-3E-1301 and CEAM10-3E-1302.Borrás García, EM.; Tortajada-Genaro, LA.; Ródenas, M.; Vera, T.; Coscollá, C.; Yusá, V.; Muñoz, A. (2015). Gas-phase and particulate products from the atmospheric degradation of the organothiophosphorus insecticide chlorpyrifos-methyl. Chemosphere. 138:888-894. https://doi.org/10.1016/j.chemosphere.2014.11.067S88889413

    Barefoot vs common footwear:A systematic review of the kinematic, kinetic and muscle activity differences during walking

    Get PDF
    Habitual footwear use has been reported to influence foot structure with an acute exposure being shown to alter foot position and mechanics. The foot is highly specialised thus these changes in structure/position could influence functionality. This review aims to investigate the effect of footwear on gait, specifically focussing on studies that have assessed kinematics, kinetics and muscle activity between walking barefoot and in common footwear. In line with PRISMA and published guidelines, a literature search was completed across six databases comprising Medline, EMBASE, Scopus, AMED, Cochrane Library and Web of Science. Fifteen of 466 articles met the predetermined inclusion criteria and were included in the review. All articles were assessed for methodological quality using a modified assessment tool based on the STROBE statement for reporting observational studies and the CASP appraisal tool. Walking barefoot enables increased forefoot spreading under load and habitual barefoot walkers have anatomically wider feet. Spatial-temporal differences including, reduced step/stride length and increased cadence, are observed when barefoot. Flatter foot placement, increased knee flexion and a reduced peak vertical ground reaction force at initial contact are also reported. Habitual barefoot walkers exhibit lower peak plantar pressures and pressure impulses, whereas peak plantar pressures are increased in the habitually shod wearer walking barefoot. Footwear particularly affects the kinematics and kinetics of gait acutely and chronically. Little research has been completed in older age populations (50+ years) and thus further research is required to better understand the effect of footwear on walking across the lifespan
    • …
    corecore